Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-1\right)\left(x+4\right)-10=8\left(x-1\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x+1,x^{2}-1.
x^{2}+3x-4-10=8\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply x-1 by x+4 and combine like terms.
x^{2}+3x-14=8\left(x-1\right)\left(x+1\right)
Subtract 10 from -4 to get -14.
x^{2}+3x-14=\left(8x-8\right)\left(x+1\right)
Use the distributive property to multiply 8 by x-1.
x^{2}+3x-14=8x^{2}-8
Use the distributive property to multiply 8x-8 by x+1 and combine like terms.
x^{2}+3x-14-8x^{2}=-8
Subtract 8x^{2} from both sides.
-7x^{2}+3x-14=-8
Combine x^{2} and -8x^{2} to get -7x^{2}.
-7x^{2}+3x-14+8=0
Add 8 to both sides.
-7x^{2}+3x-6=0
Add -14 and 8 to get -6.
x=\frac{-3±\sqrt{3^{2}-4\left(-7\right)\left(-6\right)}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 3 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-7\right)\left(-6\right)}}{2\left(-7\right)}
Square 3.
x=\frac{-3±\sqrt{9+28\left(-6\right)}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-3±\sqrt{9-168}}{2\left(-7\right)}
Multiply 28 times -6.
x=\frac{-3±\sqrt{-159}}{2\left(-7\right)}
Add 9 to -168.
x=\frac{-3±\sqrt{159}i}{2\left(-7\right)}
Take the square root of -159.
x=\frac{-3±\sqrt{159}i}{-14}
Multiply 2 times -7.
x=\frac{-3+\sqrt{159}i}{-14}
Now solve the equation x=\frac{-3±\sqrt{159}i}{-14} when ± is plus. Add -3 to i\sqrt{159}.
x=\frac{-\sqrt{159}i+3}{14}
Divide -3+i\sqrt{159} by -14.
x=\frac{-\sqrt{159}i-3}{-14}
Now solve the equation x=\frac{-3±\sqrt{159}i}{-14} when ± is minus. Subtract i\sqrt{159} from -3.
x=\frac{3+\sqrt{159}i}{14}
Divide -3-i\sqrt{159} by -14.
x=\frac{-\sqrt{159}i+3}{14} x=\frac{3+\sqrt{159}i}{14}
The equation is now solved.
\left(x-1\right)\left(x+4\right)-10=8\left(x-1\right)\left(x+1\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x+1,x^{2}-1.
x^{2}+3x-4-10=8\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply x-1 by x+4 and combine like terms.
x^{2}+3x-14=8\left(x-1\right)\left(x+1\right)
Subtract 10 from -4 to get -14.
x^{2}+3x-14=\left(8x-8\right)\left(x+1\right)
Use the distributive property to multiply 8 by x-1.
x^{2}+3x-14=8x^{2}-8
Use the distributive property to multiply 8x-8 by x+1 and combine like terms.
x^{2}+3x-14-8x^{2}=-8
Subtract 8x^{2} from both sides.
-7x^{2}+3x-14=-8
Combine x^{2} and -8x^{2} to get -7x^{2}.
-7x^{2}+3x=-8+14
Add 14 to both sides.
-7x^{2}+3x=6
Add -8 and 14 to get 6.
\frac{-7x^{2}+3x}{-7}=\frac{6}{-7}
Divide both sides by -7.
x^{2}+\frac{3}{-7}x=\frac{6}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{3}{7}x=\frac{6}{-7}
Divide 3 by -7.
x^{2}-\frac{3}{7}x=-\frac{6}{7}
Divide 6 by -7.
x^{2}-\frac{3}{7}x+\left(-\frac{3}{14}\right)^{2}=-\frac{6}{7}+\left(-\frac{3}{14}\right)^{2}
Divide -\frac{3}{7}, the coefficient of the x term, by 2 to get -\frac{3}{14}. Then add the square of -\frac{3}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{7}x+\frac{9}{196}=-\frac{6}{7}+\frac{9}{196}
Square -\frac{3}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{7}x+\frac{9}{196}=-\frac{159}{196}
Add -\frac{6}{7} to \frac{9}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{14}\right)^{2}=-\frac{159}{196}
Factor x^{2}-\frac{3}{7}x+\frac{9}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{14}\right)^{2}}=\sqrt{-\frac{159}{196}}
Take the square root of both sides of the equation.
x-\frac{3}{14}=\frac{\sqrt{159}i}{14} x-\frac{3}{14}=-\frac{\sqrt{159}i}{14}
Simplify.
x=\frac{3+\sqrt{159}i}{14} x=\frac{-\sqrt{159}i+3}{14}
Add \frac{3}{14} to both sides of the equation.