Solve for x
x\leq -\frac{13}{50}
Graph
Share
Copied to clipboard
80\left(x+4\right)-160\leq 192-15\left(3-2x\right)
Multiply both sides of the equation by 240, the least common multiple of 3,5,16. Since 240 is positive, the inequality direction remains the same.
80x+320-160\leq 192-15\left(3-2x\right)
Use the distributive property to multiply 80 by x+4.
80x+160\leq 192-15\left(3-2x\right)
Subtract 160 from 320 to get 160.
80x+160\leq 192-45+30x
Use the distributive property to multiply -15 by 3-2x.
80x+160\leq 147+30x
Subtract 45 from 192 to get 147.
80x+160-30x\leq 147
Subtract 30x from both sides.
50x+160\leq 147
Combine 80x and -30x to get 50x.
50x\leq 147-160
Subtract 160 from both sides.
50x\leq -13
Subtract 160 from 147 to get -13.
x\leq -\frac{13}{50}
Divide both sides by 50. Since 50 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}