Solve for c
c=\frac{x}{6m}-\frac{1}{2}
m\neq 0
Solve for m
\left\{\begin{matrix}m=\frac{x}{3\left(2c+1\right)}\text{, }&x\neq 0\text{ and }c\neq -\frac{1}{2}\\m\neq 0\text{, }&x=0\text{ and }c=-\frac{1}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
2\left(x+3cm\right)=3\left(x-m\right)
Multiply both sides of the equation by 18m, the least common multiple of 9m,6m.
2x+6cm=3\left(x-m\right)
Use the distributive property to multiply 2 by x+3cm.
2x+6cm=3x-3m
Use the distributive property to multiply 3 by x-m.
6cm=3x-3m-2x
Subtract 2x from both sides.
6cm=x-3m
Combine 3x and -2x to get x.
6mc=x-3m
The equation is in standard form.
\frac{6mc}{6m}=\frac{x-3m}{6m}
Divide both sides by 6m.
c=\frac{x-3m}{6m}
Dividing by 6m undoes the multiplication by 6m.
c=\frac{x}{6m}-\frac{1}{2}
Divide x-3m by 6m.
2\left(x+3cm\right)=3\left(x-m\right)
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 18m, the least common multiple of 9m,6m.
2x+6mc=3\left(x-m\right)
Use the distributive property to multiply 2 by x+3cm.
2x+6mc=3x-3m
Use the distributive property to multiply 3 by x-m.
2x+6mc+3m=3x
Add 3m to both sides.
6mc+3m=3x-2x
Subtract 2x from both sides.
6mc+3m=x
Combine 3x and -2x to get x.
\left(6c+3\right)m=x
Combine all terms containing m.
\frac{\left(6c+3\right)m}{6c+3}=\frac{x}{6c+3}
Divide both sides by 6c+3.
m=\frac{x}{6c+3}
Dividing by 6c+3 undoes the multiplication by 6c+3.
m=\frac{x}{3\left(2c+1\right)}
Divide x by 6c+3.
m=\frac{x}{3\left(2c+1\right)}\text{, }m\neq 0
Variable m cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}