Solve for x
x=-6
Graph
Share
Copied to clipboard
\left(x+3\right)\left(x+3\right)-\left(x-3\right)\times 2=\left(x-3\right)\left(x+3\right)
Variable x cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x-3,x+3.
\left(x+3\right)^{2}-\left(x-3\right)\times 2=\left(x-3\right)\left(x+3\right)
Multiply x+3 and x+3 to get \left(x+3\right)^{2}.
x^{2}+6x+9-\left(x-3\right)\times 2=\left(x-3\right)\left(x+3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9-\left(2x-6\right)=\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x-3 by 2.
x^{2}+6x+9-2x+6=\left(x-3\right)\left(x+3\right)
To find the opposite of 2x-6, find the opposite of each term.
x^{2}+4x+9+6=\left(x-3\right)\left(x+3\right)
Combine 6x and -2x to get 4x.
x^{2}+4x+15=\left(x-3\right)\left(x+3\right)
Add 9 and 6 to get 15.
x^{2}+4x+15=x^{2}-9
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
x^{2}+4x+15-x^{2}=-9
Subtract x^{2} from both sides.
4x+15=-9
Combine x^{2} and -x^{2} to get 0.
4x=-9-15
Subtract 15 from both sides.
4x=-24
Subtract 15 from -9 to get -24.
x=\frac{-24}{4}
Divide both sides by 4.
x=-6
Divide -24 by 4 to get -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}