Solve for x
x = \frac{97}{29} = 3\frac{10}{29} \approx 3.344827586
Graph
Share
Copied to clipboard
3\left(x+3\right)+2\left(2x-1\right)=18\left(2x-5\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3x+9+2\left(2x-1\right)=18\left(2x-5\right)
Use the distributive property to multiply 3 by x+3.
3x+9+4x-2=18\left(2x-5\right)
Use the distributive property to multiply 2 by 2x-1.
7x+9-2=18\left(2x-5\right)
Combine 3x and 4x to get 7x.
7x+7=18\left(2x-5\right)
Subtract 2 from 9 to get 7.
7x+7=36x-90
Use the distributive property to multiply 18 by 2x-5.
7x+7-36x=-90
Subtract 36x from both sides.
-29x+7=-90
Combine 7x and -36x to get -29x.
-29x=-90-7
Subtract 7 from both sides.
-29x=-97
Subtract 7 from -90 to get -97.
x=\frac{-97}{-29}
Divide both sides by -29.
x=\frac{97}{29}
Fraction \frac{-97}{-29} can be simplified to \frac{97}{29} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}