Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+3}{\left(x-2\right)\left(x+2\right)}-\frac{5}{x-2}+\frac{3}{x-4}
Factor x^{2}-4.
\frac{x+3}{\left(x-2\right)\left(x+2\right)}-\frac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3}{x-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-2 is \left(x-2\right)\left(x+2\right). Multiply \frac{5}{x-2} times \frac{x+2}{x+2}.
\frac{x+3-5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3}{x-4}
Since \frac{x+3}{\left(x-2\right)\left(x+2\right)} and \frac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+3-5x-10}{\left(x-2\right)\left(x+2\right)}+\frac{3}{x-4}
Do the multiplications in x+3-5\left(x+2\right).
\frac{-4x-7}{\left(x-2\right)\left(x+2\right)}+\frac{3}{x-4}
Combine like terms in x+3-5x-10.
\frac{\left(-4x-7\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)\left(x+2\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-4 is \left(x-4\right)\left(x-2\right)\left(x+2\right). Multiply \frac{-4x-7}{\left(x-2\right)\left(x+2\right)} times \frac{x-4}{x-4}. Multiply \frac{3}{x-4} times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{\left(-4x-7\right)\left(x-4\right)+3\left(x-2\right)\left(x+2\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Since \frac{\left(-4x-7\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)} and \frac{3\left(x-2\right)\left(x+2\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-4x^{2}+16x-7x+28+3x^{2}+6x-6x-12}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Do the multiplications in \left(-4x-7\right)\left(x-4\right)+3\left(x-2\right)\left(x+2\right).
\frac{-x^{2}+9x+16}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Combine like terms in -4x^{2}+16x-7x+28+3x^{2}+6x-6x-12.
\frac{-x^{2}+9x+16}{x^{3}-4x^{2}-4x+16}
Expand \left(x-4\right)\left(x-2\right)\left(x+2\right).
\frac{x+3}{\left(x-2\right)\left(x+2\right)}-\frac{5}{x-2}+\frac{3}{x-4}
Factor x^{2}-4.
\frac{x+3}{\left(x-2\right)\left(x+2\right)}-\frac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3}{x-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-2 is \left(x-2\right)\left(x+2\right). Multiply \frac{5}{x-2} times \frac{x+2}{x+2}.
\frac{x+3-5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3}{x-4}
Since \frac{x+3}{\left(x-2\right)\left(x+2\right)} and \frac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+3-5x-10}{\left(x-2\right)\left(x+2\right)}+\frac{3}{x-4}
Do the multiplications in x+3-5\left(x+2\right).
\frac{-4x-7}{\left(x-2\right)\left(x+2\right)}+\frac{3}{x-4}
Combine like terms in x+3-5x-10.
\frac{\left(-4x-7\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)\left(x+2\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(x+2\right) and x-4 is \left(x-4\right)\left(x-2\right)\left(x+2\right). Multiply \frac{-4x-7}{\left(x-2\right)\left(x+2\right)} times \frac{x-4}{x-4}. Multiply \frac{3}{x-4} times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{\left(-4x-7\right)\left(x-4\right)+3\left(x-2\right)\left(x+2\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Since \frac{\left(-4x-7\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)} and \frac{3\left(x-2\right)\left(x+2\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{-4x^{2}+16x-7x+28+3x^{2}+6x-6x-12}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Do the multiplications in \left(-4x-7\right)\left(x-4\right)+3\left(x-2\right)\left(x+2\right).
\frac{-x^{2}+9x+16}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}
Combine like terms in -4x^{2}+16x-7x+28+3x^{2}+6x-6x-12.
\frac{-x^{2}+9x+16}{x^{3}-4x^{2}-4x+16}
Expand \left(x-4\right)\left(x-2\right)\left(x+2\right).