Skip to main content
Solve for y
Tick mark Image
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

\frac{x+2yi}{2-\sqrt{-1}}+\frac{2x+y\sqrt{-1}}{2+\sqrt{-1}}=\frac{23}{5}
Calculate the square root of -1 and get i.
\frac{x+2iy}{2-\sqrt{-1}}+\frac{2x+y\sqrt{-1}}{2+\sqrt{-1}}=\frac{23}{5}
Multiply 2 and i to get 2i.
\frac{x+2iy}{2-i}+\frac{2x+y\sqrt{-1}}{2+\sqrt{-1}}=\frac{23}{5}
Calculate the square root of -1 and get i.
\frac{x+2iy}{2-i}+\frac{2x+yi}{2+\sqrt{-1}}=\frac{23}{5}
Calculate the square root of -1 and get i.
\frac{x+2iy}{2-i}+\frac{2x+yi}{2+i}=\frac{23}{5}
Calculate the square root of -1 and get i.
\frac{x}{2-i}+\frac{2iy}{2-i}+\frac{2x+yi}{2+i}=\frac{23}{5}
Divide each term of x+2iy by 2-i to get \frac{x}{2-i}+\frac{2iy}{2-i}.
\frac{x}{2-i}+\left(-\frac{2}{5}+\frac{4}{5}i\right)y+\frac{2x+yi}{2+i}=\frac{23}{5}
Divide 2iy by 2-i to get \left(-\frac{2}{5}+\frac{4}{5}i\right)y.
\frac{x}{2-i}+\left(-\frac{2}{5}+\frac{4}{5}i\right)y+\frac{2x}{2+i}+\frac{yi}{2+i}=\frac{23}{5}
Divide each term of 2x+yi by 2+i to get \frac{2x}{2+i}+\frac{yi}{2+i}.
\frac{x}{2-i}+\left(-\frac{2}{5}+\frac{4}{5}i\right)y+\left(\frac{4}{5}-\frac{2}{5}i\right)x+\frac{yi}{2+i}=\frac{23}{5}
Divide 2x by 2+i to get \left(\frac{4}{5}-\frac{2}{5}i\right)x.
\frac{x}{2-i}+\left(-\frac{2}{5}+\frac{4}{5}i\right)y+\left(\frac{4}{5}-\frac{2}{5}i\right)x+y\left(\frac{1}{5}+\frac{2}{5}i\right)=\frac{23}{5}
Divide yi by 2+i to get y\left(\frac{1}{5}+\frac{2}{5}i\right).
\frac{x}{2-i}+\left(-\frac{1}{5}+\frac{6}{5}i\right)y+\left(\frac{4}{5}-\frac{2}{5}i\right)x=\frac{23}{5}
Combine \left(-\frac{2}{5}+\frac{4}{5}i\right)y and y\left(\frac{1}{5}+\frac{2}{5}i\right) to get \left(-\frac{1}{5}+\frac{6}{5}i\right)y.
\left(-\frac{1}{5}+\frac{6}{5}i\right)y+\left(\frac{4}{5}-\frac{2}{5}i\right)x=\frac{23}{5}-\frac{x}{2-i}
Subtract \frac{x}{2-i} from both sides.
\left(-\frac{1}{5}+\frac{6}{5}i\right)y=\frac{23}{5}-\frac{x}{2-i}-\left(\frac{4}{5}-\frac{2}{5}i\right)x
Subtract \left(\frac{4}{5}-\frac{2}{5}i\right)x from both sides.
\left(-\frac{1}{5}+\frac{6}{5}i\right)y=\frac{23}{5}-\frac{x}{2-i}+\left(-\frac{4}{5}+\frac{2}{5}i\right)x
Multiply -1 and \frac{4}{5}-\frac{2}{5}i to get -\frac{4}{5}+\frac{2}{5}i.
\left(-\frac{1}{5}+\frac{6}{5}i\right)y=\left(-\frac{6}{5}+\frac{1}{5}i\right)x+\frac{23}{5}
The equation is in standard form.
\frac{\left(-\frac{1}{5}+\frac{6}{5}i\right)y}{-\frac{1}{5}+\frac{6}{5}i}=\frac{\left(-\frac{6}{5}+\frac{1}{5}i\right)x+\frac{23}{5}}{-\frac{1}{5}+\frac{6}{5}i}
Divide both sides by -\frac{1}{5}+\frac{6}{5}i.
y=\frac{\left(-\frac{6}{5}+\frac{1}{5}i\right)x+\frac{23}{5}}{-\frac{1}{5}+\frac{6}{5}i}
Dividing by -\frac{1}{5}+\frac{6}{5}i undoes the multiplication by -\frac{1}{5}+\frac{6}{5}i.
y=\left(\frac{12}{37}+\frac{35}{37}i\right)x+\left(-\frac{23}{37}-\frac{138}{37}i\right)
Divide \frac{23}{5}+\left(-\frac{6}{5}+\frac{1}{5}i\right)x by -\frac{1}{5}+\frac{6}{5}i.