Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(x+2\right)\left(x-2\right)}{x-2}+\frac{3}{x-2}}{x-6+\frac{7}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+2 times \frac{x-2}{x-2}.
\frac{\frac{\left(x+2\right)\left(x-2\right)+3}{x-2}}{x-6+\frac{7}{x+2}}
Since \frac{\left(x+2\right)\left(x-2\right)}{x-2} and \frac{3}{x-2} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-2x+2x-4+3}{x-2}}{x-6+\frac{7}{x+2}}
Do the multiplications in \left(x+2\right)\left(x-2\right)+3.
\frac{\frac{x^{2}-1}{x-2}}{x-6+\frac{7}{x+2}}
Combine like terms in x^{2}-2x+2x-4+3.
\frac{\frac{x^{2}-1}{x-2}}{\frac{\left(x-6\right)\left(x+2\right)}{x+2}+\frac{7}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-6 times \frac{x+2}{x+2}.
\frac{\frac{x^{2}-1}{x-2}}{\frac{\left(x-6\right)\left(x+2\right)+7}{x+2}}
Since \frac{\left(x-6\right)\left(x+2\right)}{x+2} and \frac{7}{x+2} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-1}{x-2}}{\frac{x^{2}+2x-6x-12+7}{x+2}}
Do the multiplications in \left(x-6\right)\left(x+2\right)+7.
\frac{\frac{x^{2}-1}{x-2}}{\frac{x^{2}-4x-5}{x+2}}
Combine like terms in x^{2}+2x-6x-12+7.
\frac{\left(x^{2}-1\right)\left(x+2\right)}{\left(x-2\right)\left(x^{2}-4x-5\right)}
Divide \frac{x^{2}-1}{x-2} by \frac{x^{2}-4x-5}{x+2} by multiplying \frac{x^{2}-1}{x-2} by the reciprocal of \frac{x^{2}-4x-5}{x+2}.
\frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x-5\right)\left(x-2\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-2\right)}
Cancel out x+1 in both numerator and denominator.
\frac{x^{2}+x-2}{x^{2}-7x+10}
Expand the expression.
\frac{\frac{\left(x+2\right)\left(x-2\right)}{x-2}+\frac{3}{x-2}}{x-6+\frac{7}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+2 times \frac{x-2}{x-2}.
\frac{\frac{\left(x+2\right)\left(x-2\right)+3}{x-2}}{x-6+\frac{7}{x+2}}
Since \frac{\left(x+2\right)\left(x-2\right)}{x-2} and \frac{3}{x-2} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-2x+2x-4+3}{x-2}}{x-6+\frac{7}{x+2}}
Do the multiplications in \left(x+2\right)\left(x-2\right)+3.
\frac{\frac{x^{2}-1}{x-2}}{x-6+\frac{7}{x+2}}
Combine like terms in x^{2}-2x+2x-4+3.
\frac{\frac{x^{2}-1}{x-2}}{\frac{\left(x-6\right)\left(x+2\right)}{x+2}+\frac{7}{x+2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-6 times \frac{x+2}{x+2}.
\frac{\frac{x^{2}-1}{x-2}}{\frac{\left(x-6\right)\left(x+2\right)+7}{x+2}}
Since \frac{\left(x-6\right)\left(x+2\right)}{x+2} and \frac{7}{x+2} have the same denominator, add them by adding their numerators.
\frac{\frac{x^{2}-1}{x-2}}{\frac{x^{2}+2x-6x-12+7}{x+2}}
Do the multiplications in \left(x-6\right)\left(x+2\right)+7.
\frac{\frac{x^{2}-1}{x-2}}{\frac{x^{2}-4x-5}{x+2}}
Combine like terms in x^{2}+2x-6x-12+7.
\frac{\left(x^{2}-1\right)\left(x+2\right)}{\left(x-2\right)\left(x^{2}-4x-5\right)}
Divide \frac{x^{2}-1}{x-2} by \frac{x^{2}-4x-5}{x+2} by multiplying \frac{x^{2}-1}{x-2} by the reciprocal of \frac{x^{2}-4x-5}{x+2}.
\frac{\left(x-1\right)\left(x+1\right)\left(x+2\right)}{\left(x-5\right)\left(x-2\right)\left(x+1\right)}
Factor the expressions that are not already factored.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-2\right)}
Cancel out x+1 in both numerator and denominator.
\frac{x^{2}+x-2}{x^{2}-7x+10}
Expand the expression.