Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Share
Copied to clipboard
\left(x+4\right)\left(x+2\right)=\left(x-1\right)\left(x+1\right)
Variable x cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+4\right), the least common multiple of x-1,x+4.
x^{2}+6x+8=\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply x+4 by x+2 and combine like terms.
x^{2}+6x+8=x^{2}-1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
x^{2}+6x+8-x^{2}=-1
Subtract x^{2} from both sides.
6x+8=-1
Combine x^{2} and -x^{2} to get 0.
6x=-1-8
Subtract 8 from both sides.
6x=-9
Subtract 8 from -1 to get -9.
x=\frac{-9}{6}
Divide both sides by 6.
x=-\frac{3}{2}
Reduce the fraction \frac{-9}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}