Solve for x
x = -\frac{6}{5} = -1\frac{1}{5} = -1.2
x = \frac{6}{5} = 1\frac{1}{5} = 1.2
Graph
Share
Copied to clipboard
\left(-8-4x\right)\left(x+2\right)-\left(4x-8\right)\left(x-2\right)=\left(x^{2}-4\right)\left(4\times 4+1\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-2\right)\left(x+2\right), the least common multiple of 2-x,2+x,4.
-16x-16-4x^{2}-\left(4x-8\right)\left(x-2\right)=\left(x^{2}-4\right)\left(4\times 4+1\right)
Use the distributive property to multiply -8-4x by x+2 and combine like terms.
-16x-16-4x^{2}-\left(4x^{2}-16x+16\right)=\left(x^{2}-4\right)\left(4\times 4+1\right)
Use the distributive property to multiply 4x-8 by x-2 and combine like terms.
-16x-16-4x^{2}-4x^{2}+16x-16=\left(x^{2}-4\right)\left(4\times 4+1\right)
To find the opposite of 4x^{2}-16x+16, find the opposite of each term.
-16x-16-8x^{2}+16x-16=\left(x^{2}-4\right)\left(4\times 4+1\right)
Combine -4x^{2} and -4x^{2} to get -8x^{2}.
-16-8x^{2}-16=\left(x^{2}-4\right)\left(4\times 4+1\right)
Combine -16x and 16x to get 0.
-32-8x^{2}=\left(x^{2}-4\right)\left(4\times 4+1\right)
Subtract 16 from -16 to get -32.
-32-8x^{2}=\left(x^{2}-4\right)\left(16+1\right)
Multiply 4 and 4 to get 16.
-32-8x^{2}=\left(x^{2}-4\right)\times 17
Add 16 and 1 to get 17.
-32-8x^{2}=17x^{2}-68
Use the distributive property to multiply x^{2}-4 by 17.
-32-8x^{2}-17x^{2}=-68
Subtract 17x^{2} from both sides.
-32-25x^{2}=-68
Combine -8x^{2} and -17x^{2} to get -25x^{2}.
-25x^{2}=-68+32
Add 32 to both sides.
-25x^{2}=-36
Add -68 and 32 to get -36.
x^{2}=\frac{-36}{-25}
Divide both sides by -25.
x^{2}=\frac{36}{25}
Fraction \frac{-36}{-25} can be simplified to \frac{36}{25} by removing the negative sign from both the numerator and the denominator.
x=\frac{6}{5} x=-\frac{6}{5}
Take the square root of both sides of the equation.
\left(-8-4x\right)\left(x+2\right)-\left(4x-8\right)\left(x-2\right)=\left(x^{2}-4\right)\left(4\times 4+1\right)
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-2\right)\left(x+2\right), the least common multiple of 2-x,2+x,4.
-16x-16-4x^{2}-\left(4x-8\right)\left(x-2\right)=\left(x^{2}-4\right)\left(4\times 4+1\right)
Use the distributive property to multiply -8-4x by x+2 and combine like terms.
-16x-16-4x^{2}-\left(4x^{2}-16x+16\right)=\left(x^{2}-4\right)\left(4\times 4+1\right)
Use the distributive property to multiply 4x-8 by x-2 and combine like terms.
-16x-16-4x^{2}-4x^{2}+16x-16=\left(x^{2}-4\right)\left(4\times 4+1\right)
To find the opposite of 4x^{2}-16x+16, find the opposite of each term.
-16x-16-8x^{2}+16x-16=\left(x^{2}-4\right)\left(4\times 4+1\right)
Combine -4x^{2} and -4x^{2} to get -8x^{2}.
-16-8x^{2}-16=\left(x^{2}-4\right)\left(4\times 4+1\right)
Combine -16x and 16x to get 0.
-32-8x^{2}=\left(x^{2}-4\right)\left(4\times 4+1\right)
Subtract 16 from -16 to get -32.
-32-8x^{2}=\left(x^{2}-4\right)\left(16+1\right)
Multiply 4 and 4 to get 16.
-32-8x^{2}=\left(x^{2}-4\right)\times 17
Add 16 and 1 to get 17.
-32-8x^{2}=17x^{2}-68
Use the distributive property to multiply x^{2}-4 by 17.
-32-8x^{2}-17x^{2}=-68
Subtract 17x^{2} from both sides.
-32-25x^{2}=-68
Combine -8x^{2} and -17x^{2} to get -25x^{2}.
-32-25x^{2}+68=0
Add 68 to both sides.
36-25x^{2}=0
Add -32 and 68 to get 36.
-25x^{2}+36=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-25\right)\times 36}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, 0 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-25\right)\times 36}}{2\left(-25\right)}
Square 0.
x=\frac{0±\sqrt{100\times 36}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{0±\sqrt{3600}}{2\left(-25\right)}
Multiply 100 times 36.
x=\frac{0±60}{2\left(-25\right)}
Take the square root of 3600.
x=\frac{0±60}{-50}
Multiply 2 times -25.
x=-\frac{6}{5}
Now solve the equation x=\frac{0±60}{-50} when ± is plus. Reduce the fraction \frac{60}{-50} to lowest terms by extracting and canceling out 10.
x=\frac{6}{5}
Now solve the equation x=\frac{0±60}{-50} when ± is minus. Reduce the fraction \frac{-60}{-50} to lowest terms by extracting and canceling out 10.
x=-\frac{6}{5} x=\frac{6}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}