Solve for x
x=-y^{2}
y\neq 1\text{ and }y\neq 0
Solve for y (complex solution)
\left\{\begin{matrix}y=i\sqrt{x}\text{, }&x\neq 0\\y=-i\sqrt{x}\text{, }&x\neq -1\text{ and }x\neq 0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\sqrt{-x}\text{, }&x<0\\y=\sqrt{-x}\text{, }&x\neq -1\text{ and }x<0\end{matrix}\right.
Graph
Share
Copied to clipboard
y\left(x+1\right)=\left(y-1\right)x+y\left(y-1\right)\left(-1\right)
Multiply both sides of the equation by y\left(y-1\right), the least common multiple of y-1,y.
yx+y=\left(y-1\right)x+y\left(y-1\right)\left(-1\right)
Use the distributive property to multiply y by x+1.
yx+y=yx-x+y\left(y-1\right)\left(-1\right)
Use the distributive property to multiply y-1 by x.
yx+y=yx-x+\left(y^{2}-y\right)\left(-1\right)
Use the distributive property to multiply y by y-1.
yx+y=yx-x-y^{2}+y
Use the distributive property to multiply y^{2}-y by -1.
yx+y-yx=-x-y^{2}+y
Subtract yx from both sides.
y=-x-y^{2}+y
Combine yx and -yx to get 0.
-x-y^{2}+y=y
Swap sides so that all variable terms are on the left hand side.
-x+y=y+y^{2}
Add y^{2} to both sides.
-x=y+y^{2}-y
Subtract y from both sides.
-x=y^{2}
Combine y and -y to get 0.
\frac{-x}{-1}=\frac{y^{2}}{-1}
Divide both sides by -1.
x=\frac{y^{2}}{-1}
Dividing by -1 undoes the multiplication by -1.
x=-y^{2}
Divide y^{2} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}