Solve for m
m=5x+3
x\neq 2\text{ and }x\neq -3
Solve for x
x=\frac{m-3}{5}
m\neq 13\text{ and }m\neq -12
Graph
Share
Copied to clipboard
\left(x+3\right)\left(x+1\right)-\left(x-2\right)x=x+m
Multiply both sides of the equation by \left(x-2\right)\left(x+3\right), the least common multiple of x-2,x+3,\left(x-2\right)\left(x+3\right).
x^{2}+4x+3-\left(x-2\right)x=x+m
Use the distributive property to multiply x+3 by x+1 and combine like terms.
x^{2}+4x+3-\left(x^{2}-2x\right)=x+m
Use the distributive property to multiply x-2 by x.
x^{2}+4x+3-x^{2}+2x=x+m
To find the opposite of x^{2}-2x, find the opposite of each term.
4x+3+2x=x+m
Combine x^{2} and -x^{2} to get 0.
6x+3=x+m
Combine 4x and 2x to get 6x.
x+m=6x+3
Swap sides so that all variable terms are on the left hand side.
m=6x+3-x
Subtract x from both sides.
m=5x+3
Combine 6x and -x to get 5x.
\left(x+3\right)\left(x+1\right)-\left(x-2\right)x=x+m
Variable x cannot be equal to any of the values -3,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+3\right), the least common multiple of x-2,x+3,\left(x-2\right)\left(x+3\right).
x^{2}+4x+3-\left(x-2\right)x=x+m
Use the distributive property to multiply x+3 by x+1 and combine like terms.
x^{2}+4x+3-\left(x^{2}-2x\right)=x+m
Use the distributive property to multiply x-2 by x.
x^{2}+4x+3-x^{2}+2x=x+m
To find the opposite of x^{2}-2x, find the opposite of each term.
4x+3+2x=x+m
Combine x^{2} and -x^{2} to get 0.
6x+3=x+m
Combine 4x and 2x to get 6x.
6x+3-x=m
Subtract x from both sides.
5x+3=m
Combine 6x and -x to get 5x.
5x=m-3
Subtract 3 from both sides.
\frac{5x}{5}=\frac{m-3}{5}
Divide both sides by 5.
x=\frac{m-3}{5}
Dividing by 5 undoes the multiplication by 5.
x=\frac{m-3}{5}\text{, }x\neq -3\text{ and }x\neq 2
Variable x cannot be equal to any of the values -3,2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}