Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x+1}{x-2}}{1+\frac{2x+5}{\left(x-2\right)\left(x+2\right)}}
Factor x^{2}-4.
\frac{\frac{x+1}{x-2}}{\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2x+5}{\left(x-2\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{\frac{x+1}{x-2}}{\frac{\left(x-2\right)\left(x+2\right)+2x+5}{\left(x-2\right)\left(x+2\right)}}
Since \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{2x+5}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x+1}{x-2}}{\frac{x^{2}+2x-2x-4+2x+5}{\left(x-2\right)\left(x+2\right)}}
Do the multiplications in \left(x-2\right)\left(x+2\right)+2x+5.
\frac{\frac{x+1}{x-2}}{\frac{x^{2}+2x+1}{\left(x-2\right)\left(x+2\right)}}
Combine like terms in x^{2}+2x-2x-4+2x+5.
\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x^{2}+2x+1\right)}
Divide \frac{x+1}{x-2} by \frac{x^{2}+2x+1}{\left(x-2\right)\left(x+2\right)} by multiplying \frac{x+1}{x-2} by the reciprocal of \frac{x^{2}+2x+1}{\left(x-2\right)\left(x+2\right)}.
\frac{\left(x+1\right)\left(x+2\right)}{x^{2}+2x+1}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{x+2}{x+1}
Cancel out x+1 in both numerator and denominator.
\frac{\frac{x+1}{x-2}}{1+\frac{2x+5}{\left(x-2\right)\left(x+2\right)}}
Factor x^{2}-4.
\frac{\frac{x+1}{x-2}}{\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2x+5}{\left(x-2\right)\left(x+2\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.
\frac{\frac{x+1}{x-2}}{\frac{\left(x-2\right)\left(x+2\right)+2x+5}{\left(x-2\right)\left(x+2\right)}}
Since \frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)} and \frac{2x+5}{\left(x-2\right)\left(x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{x+1}{x-2}}{\frac{x^{2}+2x-2x-4+2x+5}{\left(x-2\right)\left(x+2\right)}}
Do the multiplications in \left(x-2\right)\left(x+2\right)+2x+5.
\frac{\frac{x+1}{x-2}}{\frac{x^{2}+2x+1}{\left(x-2\right)\left(x+2\right)}}
Combine like terms in x^{2}+2x-2x-4+2x+5.
\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x^{2}+2x+1\right)}
Divide \frac{x+1}{x-2} by \frac{x^{2}+2x+1}{\left(x-2\right)\left(x+2\right)} by multiplying \frac{x+1}{x-2} by the reciprocal of \frac{x^{2}+2x+1}{\left(x-2\right)\left(x+2\right)}.
\frac{\left(x+1\right)\left(x+2\right)}{x^{2}+2x+1}
Cancel out x-2 in both numerator and denominator.
\frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{x+2}{x+1}
Cancel out x+1 in both numerator and denominator.