Solve for x
x<\frac{5}{4}
Graph
Share
Copied to clipboard
2\left(x+1\right)>3\left(2x-5\right)+12
Multiply both sides of the equation by 12, the least common multiple of 6,4. Since 12 is positive, the inequality direction remains the same.
2x+2>3\left(2x-5\right)+12
Use the distributive property to multiply 2 by x+1.
2x+2>6x-15+12
Use the distributive property to multiply 3 by 2x-5.
2x+2>6x-3
Add -15 and 12 to get -3.
2x+2-6x>-3
Subtract 6x from both sides.
-4x+2>-3
Combine 2x and -6x to get -4x.
-4x>-3-2
Subtract 2 from both sides.
-4x>-5
Subtract 2 from -3 to get -5.
x<\frac{-5}{-4}
Divide both sides by -4. Since -4 is negative, the inequality direction is changed.
x<\frac{5}{4}
Fraction \frac{-5}{-4} can be simplified to \frac{5}{4} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}