Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\left(1+x\right)\left(x+1\right)-2\left(2x-1\right)+\left(2x-2\right)\times 6-\left(1+x\right)=0
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-1\right)\left(x+1\right), the least common multiple of 2-2x,x^{2}-1,x+1.
\left(-1-x\right)\left(x+1\right)-2\left(2x-1\right)+\left(2x-2\right)\times 6-\left(1+x\right)=0
To find the opposite of 1+x, find the opposite of each term.
-2x-1-x^{2}-2\left(2x-1\right)+\left(2x-2\right)\times 6-\left(1+x\right)=0
Use the distributive property to multiply -1-x by x+1 and combine like terms.
-2x-1-x^{2}-4x+2+\left(2x-2\right)\times 6-\left(1+x\right)=0
Use the distributive property to multiply -2 by 2x-1.
-6x-1-x^{2}+2+\left(2x-2\right)\times 6-\left(1+x\right)=0
Combine -2x and -4x to get -6x.
-6x+1-x^{2}+\left(2x-2\right)\times 6-\left(1+x\right)=0
Add -1 and 2 to get 1.
-6x+1-x^{2}+12x-12-\left(1+x\right)=0
Use the distributive property to multiply 2x-2 by 6.
6x+1-x^{2}-12-\left(1+x\right)=0
Combine -6x and 12x to get 6x.
6x-11-x^{2}-\left(1+x\right)=0
Subtract 12 from 1 to get -11.
6x-11-x^{2}-1-x=0
To find the opposite of 1+x, find the opposite of each term.
6x-12-x^{2}-x=0
Subtract 1 from -11 to get -12.
5x-12-x^{2}=0
Combine 6x and -x to get 5x.
-x^{2}+5x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-12\right)}}{2\left(-1\right)}
Square 5.
x=\frac{-5±\sqrt{25+4\left(-12\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-5±\sqrt{25-48}}{2\left(-1\right)}
Multiply 4 times -12.
x=\frac{-5±\sqrt{-23}}{2\left(-1\right)}
Add 25 to -48.
x=\frac{-5±\sqrt{23}i}{2\left(-1\right)}
Take the square root of -23.
x=\frac{-5±\sqrt{23}i}{-2}
Multiply 2 times -1.
x=\frac{-5+\sqrt{23}i}{-2}
Now solve the equation x=\frac{-5±\sqrt{23}i}{-2} when ± is plus. Add -5 to i\sqrt{23}.
x=\frac{-\sqrt{23}i+5}{2}
Divide -5+i\sqrt{23} by -2.
x=\frac{-\sqrt{23}i-5}{-2}
Now solve the equation x=\frac{-5±\sqrt{23}i}{-2} when ± is minus. Subtract i\sqrt{23} from -5.
x=\frac{5+\sqrt{23}i}{2}
Divide -5-i\sqrt{23} by -2.
x=\frac{-\sqrt{23}i+5}{2} x=\frac{5+\sqrt{23}i}{2}
The equation is now solved.
-\left(1+x\right)\left(x+1\right)-2\left(2x-1\right)+\left(2x-2\right)\times 6-\left(1+x\right)=0
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-1\right)\left(x+1\right), the least common multiple of 2-2x,x^{2}-1,x+1.
\left(-1-x\right)\left(x+1\right)-2\left(2x-1\right)+\left(2x-2\right)\times 6-\left(1+x\right)=0
To find the opposite of 1+x, find the opposite of each term.
-2x-1-x^{2}-2\left(2x-1\right)+\left(2x-2\right)\times 6-\left(1+x\right)=0
Use the distributive property to multiply -1-x by x+1 and combine like terms.
-2x-1-x^{2}-4x+2+\left(2x-2\right)\times 6-\left(1+x\right)=0
Use the distributive property to multiply -2 by 2x-1.
-6x-1-x^{2}+2+\left(2x-2\right)\times 6-\left(1+x\right)=0
Combine -2x and -4x to get -6x.
-6x+1-x^{2}+\left(2x-2\right)\times 6-\left(1+x\right)=0
Add -1 and 2 to get 1.
-6x+1-x^{2}+12x-12-\left(1+x\right)=0
Use the distributive property to multiply 2x-2 by 6.
6x+1-x^{2}-12-\left(1+x\right)=0
Combine -6x and 12x to get 6x.
6x-11-x^{2}-\left(1+x\right)=0
Subtract 12 from 1 to get -11.
6x-11-x^{2}-1-x=0
To find the opposite of 1+x, find the opposite of each term.
6x-12-x^{2}-x=0
Subtract 1 from -11 to get -12.
5x-12-x^{2}=0
Combine 6x and -x to get 5x.
5x-x^{2}=12
Add 12 to both sides. Anything plus zero gives itself.
-x^{2}+5x=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+5x}{-1}=\frac{12}{-1}
Divide both sides by -1.
x^{2}+\frac{5}{-1}x=\frac{12}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-5x=\frac{12}{-1}
Divide 5 by -1.
x^{2}-5x=-12
Divide 12 by -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-12+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-12+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=-\frac{23}{4}
Add -12 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=-\frac{23}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{23}i}{2} x-\frac{5}{2}=-\frac{\sqrt{23}i}{2}
Simplify.
x=\frac{5+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i+5}{2}
Add \frac{5}{2} to both sides of the equation.