Solve for x
x\geq -\frac{11}{7}
Graph
Share
Copied to clipboard
6\left(x+1\right)+4\left(x+2\right)+3\left(x+3\right)\geq 12+6x
Multiply both sides of the equation by 12, the least common multiple of 2,3,4. Since 12 is positive, the inequality direction remains the same.
6x+6+4\left(x+2\right)+3\left(x+3\right)\geq 12+6x
Use the distributive property to multiply 6 by x+1.
6x+6+4x+8+3\left(x+3\right)\geq 12+6x
Use the distributive property to multiply 4 by x+2.
10x+6+8+3\left(x+3\right)\geq 12+6x
Combine 6x and 4x to get 10x.
10x+14+3\left(x+3\right)\geq 12+6x
Add 6 and 8 to get 14.
10x+14+3x+9\geq 12+6x
Use the distributive property to multiply 3 by x+3.
13x+14+9\geq 12+6x
Combine 10x and 3x to get 13x.
13x+23\geq 12+6x
Add 14 and 9 to get 23.
13x+23-6x\geq 12
Subtract 6x from both sides.
7x+23\geq 12
Combine 13x and -6x to get 7x.
7x\geq 12-23
Subtract 23 from both sides.
7x\geq -11
Subtract 23 from 12 to get -11.
x\geq -\frac{11}{7}
Divide both sides by 7. Since 7 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}