Solve for x
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
Graph
Share
Copied to clipboard
2\left(x+\frac{7}{15}\right)=3\left(x-\frac{7}{15}\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2.
2x+2\times \frac{7}{15}=3\left(x-\frac{7}{15}\right)
Use the distributive property to multiply 2 by x+\frac{7}{15}.
2x+\frac{2\times 7}{15}=3\left(x-\frac{7}{15}\right)
Express 2\times \frac{7}{15} as a single fraction.
2x+\frac{14}{15}=3\left(x-\frac{7}{15}\right)
Multiply 2 and 7 to get 14.
2x+\frac{14}{15}=3x+3\left(-\frac{7}{15}\right)
Use the distributive property to multiply 3 by x-\frac{7}{15}.
2x+\frac{14}{15}=3x+\frac{3\left(-7\right)}{15}
Express 3\left(-\frac{7}{15}\right) as a single fraction.
2x+\frac{14}{15}=3x+\frac{-21}{15}
Multiply 3 and -7 to get -21.
2x+\frac{14}{15}=3x-\frac{7}{5}
Reduce the fraction \frac{-21}{15} to lowest terms by extracting and canceling out 3.
2x+\frac{14}{15}-3x=-\frac{7}{5}
Subtract 3x from both sides.
-x+\frac{14}{15}=-\frac{7}{5}
Combine 2x and -3x to get -x.
-x=-\frac{7}{5}-\frac{14}{15}
Subtract \frac{14}{15} from both sides.
-x=-\frac{21}{15}-\frac{14}{15}
Least common multiple of 5 and 15 is 15. Convert -\frac{7}{5} and \frac{14}{15} to fractions with denominator 15.
-x=\frac{-21-14}{15}
Since -\frac{21}{15} and \frac{14}{15} have the same denominator, subtract them by subtracting their numerators.
-x=\frac{-35}{15}
Subtract 14 from -21 to get -35.
-x=-\frac{7}{3}
Reduce the fraction \frac{-35}{15} to lowest terms by extracting and canceling out 5.
x=\frac{7}{3}
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}