Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x\left(x-7\right)-6=3x-2\left(x-4\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2.
2x^{2}-14x-6=3x-2\left(x-4\right)
Use the distributive property to multiply 2x by x-7.
2x^{2}-14x-6=3x-2x+8
Use the distributive property to multiply -2 by x-4.
2x^{2}-14x-6=x+8
Combine 3x and -2x to get x.
2x^{2}-14x-6-x=8
Subtract x from both sides.
2x^{2}-15x-6=8
Combine -14x and -x to get -15x.
2x^{2}-15x-6-8=0
Subtract 8 from both sides.
2x^{2}-15x-14=0
Subtract 8 from -6 to get -14.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 2\left(-14\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -15 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 2\left(-14\right)}}{2\times 2}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-8\left(-14\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-15\right)±\sqrt{225+112}}{2\times 2}
Multiply -8 times -14.
x=\frac{-\left(-15\right)±\sqrt{337}}{2\times 2}
Add 225 to 112.
x=\frac{15±\sqrt{337}}{2\times 2}
The opposite of -15 is 15.
x=\frac{15±\sqrt{337}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{337}+15}{4}
Now solve the equation x=\frac{15±\sqrt{337}}{4} when ± is plus. Add 15 to \sqrt{337}.
x=\frac{15-\sqrt{337}}{4}
Now solve the equation x=\frac{15±\sqrt{337}}{4} when ± is minus. Subtract \sqrt{337} from 15.
x=\frac{\sqrt{337}+15}{4} x=\frac{15-\sqrt{337}}{4}
The equation is now solved.
2x\left(x-7\right)-6=3x-2\left(x-4\right)
Multiply both sides of the equation by 6, the least common multiple of 3,2.
2x^{2}-14x-6=3x-2\left(x-4\right)
Use the distributive property to multiply 2x by x-7.
2x^{2}-14x-6=3x-2x+8
Use the distributive property to multiply -2 by x-4.
2x^{2}-14x-6=x+8
Combine 3x and -2x to get x.
2x^{2}-14x-6-x=8
Subtract x from both sides.
2x^{2}-15x-6=8
Combine -14x and -x to get -15x.
2x^{2}-15x=8+6
Add 6 to both sides.
2x^{2}-15x=14
Add 8 and 6 to get 14.
\frac{2x^{2}-15x}{2}=\frac{14}{2}
Divide both sides by 2.
x^{2}-\frac{15}{2}x=\frac{14}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{15}{2}x=7
Divide 14 by 2.
x^{2}-\frac{15}{2}x+\left(-\frac{15}{4}\right)^{2}=7+\left(-\frac{15}{4}\right)^{2}
Divide -\frac{15}{2}, the coefficient of the x term, by 2 to get -\frac{15}{4}. Then add the square of -\frac{15}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{15}{2}x+\frac{225}{16}=7+\frac{225}{16}
Square -\frac{15}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{15}{2}x+\frac{225}{16}=\frac{337}{16}
Add 7 to \frac{225}{16}.
\left(x-\frac{15}{4}\right)^{2}=\frac{337}{16}
Factor x^{2}-\frac{15}{2}x+\frac{225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{4}\right)^{2}}=\sqrt{\frac{337}{16}}
Take the square root of both sides of the equation.
x-\frac{15}{4}=\frac{\sqrt{337}}{4} x-\frac{15}{4}=-\frac{\sqrt{337}}{4}
Simplify.
x=\frac{\sqrt{337}+15}{4} x=\frac{15-\sqrt{337}}{4}
Add \frac{15}{4} to both sides of the equation.