Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(30-x\right)=112\times 2
Multiply both sides by 2.
30x-x^{2}=112\times 2
Use the distributive property to multiply x by 30-x.
30x-x^{2}=224
Multiply 112 and 2 to get 224.
30x-x^{2}-224=0
Subtract 224 from both sides.
-x^{2}+30x-224=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\left(-1\right)\left(-224\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 30 for b, and -224 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-1\right)\left(-224\right)}}{2\left(-1\right)}
Square 30.
x=\frac{-30±\sqrt{900+4\left(-224\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-30±\sqrt{900-896}}{2\left(-1\right)}
Multiply 4 times -224.
x=\frac{-30±\sqrt{4}}{2\left(-1\right)}
Add 900 to -896.
x=\frac{-30±2}{2\left(-1\right)}
Take the square root of 4.
x=\frac{-30±2}{-2}
Multiply 2 times -1.
x=-\frac{28}{-2}
Now solve the equation x=\frac{-30±2}{-2} when ± is plus. Add -30 to 2.
x=14
Divide -28 by -2.
x=-\frac{32}{-2}
Now solve the equation x=\frac{-30±2}{-2} when ± is minus. Subtract 2 from -30.
x=16
Divide -32 by -2.
x=14 x=16
The equation is now solved.
x\left(30-x\right)=112\times 2
Multiply both sides by 2.
30x-x^{2}=112\times 2
Use the distributive property to multiply x by 30-x.
30x-x^{2}=224
Multiply 112 and 2 to get 224.
-x^{2}+30x=224
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+30x}{-1}=\frac{224}{-1}
Divide both sides by -1.
x^{2}+\frac{30}{-1}x=\frac{224}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-30x=\frac{224}{-1}
Divide 30 by -1.
x^{2}-30x=-224
Divide 224 by -1.
x^{2}-30x+\left(-15\right)^{2}=-224+\left(-15\right)^{2}
Divide -30, the coefficient of the x term, by 2 to get -15. Then add the square of -15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-30x+225=-224+225
Square -15.
x^{2}-30x+225=1
Add -224 to 225.
\left(x-15\right)^{2}=1
Factor x^{2}-30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-15\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-15=1 x-15=-1
Simplify.
x=16 x=14
Add 15 to both sides of the equation.