Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{x}{x-y}-\frac{x^{2}+y^{2}}{\left(x+y\right)\left(x-y\right)}+\frac{y}{x+y}
Factor x^{2}-y^{2}.
\frac{x\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}+y^{2}}{\left(x+y\right)\left(x-y\right)}+\frac{y}{x+y}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and \left(x+y\right)\left(x-y\right) is \left(x+y\right)\left(x-y\right). Multiply \frac{x}{x-y} times \frac{x+y}{x+y}.
\frac{x\left(x+y\right)-\left(x^{2}+y^{2}\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{x+y}
Since \frac{x\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{x^{2}+y^{2}}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+xy-x^{2}-y^{2}}{\left(x+y\right)\left(x-y\right)}+\frac{y}{x+y}
Do the multiplications in x\left(x+y\right)-\left(x^{2}+y^{2}\right).
\frac{-y^{2}+xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{x+y}
Combine like terms in x^{2}+xy-x^{2}-y^{2}.
\frac{y\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{x+y}
Factor the expressions that are not already factored in \frac{-y^{2}+xy}{\left(x+y\right)\left(x-y\right)}.
\frac{y}{x+y}+\frac{y}{x+y}
Cancel out x-y in both numerator and denominator.
\frac{y+y}{x+y}
Since \frac{y}{x+y} and \frac{y}{x+y} have the same denominator, add them by adding their numerators.
\frac{2y}{x+y}
Combine like terms in y+y.
\frac{x}{x-y}-\frac{x^{2}+y^{2}}{\left(x+y\right)\left(x-y\right)}+\frac{y}{x+y}
Factor x^{2}-y^{2}.
\frac{x\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}+y^{2}}{\left(x+y\right)\left(x-y\right)}+\frac{y}{x+y}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and \left(x+y\right)\left(x-y\right) is \left(x+y\right)\left(x-y\right). Multiply \frac{x}{x-y} times \frac{x+y}{x+y}.
\frac{x\left(x+y\right)-\left(x^{2}+y^{2}\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{x+y}
Since \frac{x\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} and \frac{x^{2}+y^{2}}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+xy-x^{2}-y^{2}}{\left(x+y\right)\left(x-y\right)}+\frac{y}{x+y}
Do the multiplications in x\left(x+y\right)-\left(x^{2}+y^{2}\right).
\frac{-y^{2}+xy}{\left(x+y\right)\left(x-y\right)}+\frac{y}{x+y}
Combine like terms in x^{2}+xy-x^{2}-y^{2}.
\frac{y\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}+\frac{y}{x+y}
Factor the expressions that are not already factored in \frac{-y^{2}+xy}{\left(x+y\right)\left(x-y\right)}.
\frac{y}{x+y}+\frac{y}{x+y}
Cancel out x-y in both numerator and denominator.
\frac{y+y}{x+y}
Since \frac{y}{x+y} and \frac{y}{x+y} have the same denominator, add them by adding their numerators.
\frac{2y}{x+y}
Combine like terms in y+y.