Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x\left(x^{2}+9\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and x^{2}+9 is \left(x-3\right)\left(x^{2}+9\right). Multiply \frac{x}{x-3} times \frac{x^{2}+9}{x^{2}+9}. Multiply \frac{x+1}{x^{2}+9} times \frac{x-3}{x-3}.
\frac{x\left(x^{2}+9\right)+\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Since \frac{x\left(x^{2}+9\right)}{\left(x-3\right)\left(x^{2}+9\right)} and \frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+9x+x^{2}-3x+x-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Do the multiplications in x\left(x^{2}+9\right)+\left(x+1\right)\left(x-3\right).
\frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Combine like terms in x^{3}+9x+x^{2}-3x+x-3.
\frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{\left(x-3\right)^{2}}
Factor x^{2}-6x+9.
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}+\frac{2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x^{2}+9\right) and \left(x-3\right)^{2} is \left(x-3\right)^{2}\left(x^{2}+9\right). Multiply \frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)} times \frac{x-3}{x-3}. Multiply \frac{2}{\left(x-3\right)^{2}} times \frac{x^{2}+9}{x^{2}+9}.
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)+2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Since \frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)} and \frac{2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)} have the same denominator, add them by adding their numerators.
\frac{x^{4}-3x^{3}+7x^{2}-21x+x^{3}-3x^{2}-3x+9+2x^{2}+18}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Do the multiplications in \left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)+2\left(x^{2}+9\right).
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Combine like terms in x^{4}-3x^{3}+7x^{2}-21x+x^{3}-3x^{2}-3x+9+2x^{2}+18.
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{x^{4}-6x^{3}+18x^{2}-54x+81}
Expand \left(x-3\right)^{2}\left(x^{2}+9\right).
\frac{x\left(x^{2}+9\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and x^{2}+9 is \left(x-3\right)\left(x^{2}+9\right). Multiply \frac{x}{x-3} times \frac{x^{2}+9}{x^{2}+9}. Multiply \frac{x+1}{x^{2}+9} times \frac{x-3}{x-3}.
\frac{x\left(x^{2}+9\right)+\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Since \frac{x\left(x^{2}+9\right)}{\left(x-3\right)\left(x^{2}+9\right)} and \frac{\left(x+1\right)\left(x-3\right)}{\left(x-3\right)\left(x^{2}+9\right)} have the same denominator, add them by adding their numerators.
\frac{x^{3}+9x+x^{2}-3x+x-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Do the multiplications in x\left(x^{2}+9\right)+\left(x+1\right)\left(x-3\right).
\frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{x^{2}-6x+9}
Combine like terms in x^{3}+9x+x^{2}-3x+x-3.
\frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)}+\frac{2}{\left(x-3\right)^{2}}
Factor x^{2}-6x+9.
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}+\frac{2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x^{2}+9\right) and \left(x-3\right)^{2} is \left(x-3\right)^{2}\left(x^{2}+9\right). Multiply \frac{x^{3}+7x+x^{2}-3}{\left(x-3\right)\left(x^{2}+9\right)} times \frac{x-3}{x-3}. Multiply \frac{2}{\left(x-3\right)^{2}} times \frac{x^{2}+9}{x^{2}+9}.
\frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)+2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Since \frac{\left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)} and \frac{2\left(x^{2}+9\right)}{\left(x-3\right)^{2}\left(x^{2}+9\right)} have the same denominator, add them by adding their numerators.
\frac{x^{4}-3x^{3}+7x^{2}-21x+x^{3}-3x^{2}-3x+9+2x^{2}+18}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Do the multiplications in \left(x^{3}+7x+x^{2}-3\right)\left(x-3\right)+2\left(x^{2}+9\right).
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{\left(x-3\right)^{2}\left(x^{2}+9\right)}
Combine like terms in x^{4}-3x^{3}+7x^{2}-21x+x^{3}-3x^{2}-3x+9+2x^{2}+18.
\frac{x^{4}-2x^{3}+6x^{2}-24x+27}{x^{4}-6x^{3}+18x^{2}-54x+81}
Expand \left(x-3\right)^{2}\left(x^{2}+9\right).