Solve for x
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Graph
Share
Copied to clipboard
\left(x+2\right)x+\left(x-2\right)\left(x+2\right)\left(-1\right)=1
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x+2\right), the least common multiple of x-2,x^{2}-4.
x^{2}+2x+\left(x-2\right)\left(x+2\right)\left(-1\right)=1
Use the distributive property to multiply x+2 by x.
x^{2}+2x+\left(x^{2}-4\right)\left(-1\right)=1
Use the distributive property to multiply x-2 by x+2 and combine like terms.
x^{2}+2x-x^{2}+4=1
Use the distributive property to multiply x^{2}-4 by -1.
2x+4=1
Combine x^{2} and -x^{2} to get 0.
2x=1-4
Subtract 4 from both sides.
2x=-3
Subtract 4 from 1 to get -3.
x=\frac{-3}{2}
Divide both sides by 2.
x=-\frac{3}{2}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}