Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(9x-36\right)x+\left(9x+36\right)x=\left(x^{2}-16\right)\left(5\times 9+4\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by 9\left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4,9.
9x^{2}-36x+\left(9x+36\right)x=\left(x^{2}-16\right)\left(5\times 9+4\right)
Use the distributive property to multiply 9x-36 by x.
9x^{2}-36x+9x^{2}+36x=\left(x^{2}-16\right)\left(5\times 9+4\right)
Use the distributive property to multiply 9x+36 by x.
18x^{2}-36x+36x=\left(x^{2}-16\right)\left(5\times 9+4\right)
Combine 9x^{2} and 9x^{2} to get 18x^{2}.
18x^{2}=\left(x^{2}-16\right)\left(5\times 9+4\right)
Combine -36x and 36x to get 0.
18x^{2}=\left(x^{2}-16\right)\left(45+4\right)
Multiply 5 and 9 to get 45.
18x^{2}=\left(x^{2}-16\right)\times 49
Add 45 and 4 to get 49.
18x^{2}=49x^{2}-784
Use the distributive property to multiply x^{2}-16 by 49.
18x^{2}-49x^{2}=-784
Subtract 49x^{2} from both sides.
-31x^{2}=-784
Combine 18x^{2} and -49x^{2} to get -31x^{2}.
x^{2}=\frac{-784}{-31}
Divide both sides by -31.
x^{2}=\frac{784}{31}
Fraction \frac{-784}{-31} can be simplified to \frac{784}{31} by removing the negative sign from both the numerator and the denominator.
x=\frac{28\sqrt{31}}{31} x=-\frac{28\sqrt{31}}{31}
Take the square root of both sides of the equation.
\left(9x-36\right)x+\left(9x+36\right)x=\left(x^{2}-16\right)\left(5\times 9+4\right)
Variable x cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by 9\left(x-4\right)\left(x+4\right), the least common multiple of x+4,x-4,9.
9x^{2}-36x+\left(9x+36\right)x=\left(x^{2}-16\right)\left(5\times 9+4\right)
Use the distributive property to multiply 9x-36 by x.
9x^{2}-36x+9x^{2}+36x=\left(x^{2}-16\right)\left(5\times 9+4\right)
Use the distributive property to multiply 9x+36 by x.
18x^{2}-36x+36x=\left(x^{2}-16\right)\left(5\times 9+4\right)
Combine 9x^{2} and 9x^{2} to get 18x^{2}.
18x^{2}=\left(x^{2}-16\right)\left(5\times 9+4\right)
Combine -36x and 36x to get 0.
18x^{2}=\left(x^{2}-16\right)\left(45+4\right)
Multiply 5 and 9 to get 45.
18x^{2}=\left(x^{2}-16\right)\times 49
Add 45 and 4 to get 49.
18x^{2}=49x^{2}-784
Use the distributive property to multiply x^{2}-16 by 49.
18x^{2}-49x^{2}=-784
Subtract 49x^{2} from both sides.
-31x^{2}=-784
Combine 18x^{2} and -49x^{2} to get -31x^{2}.
-31x^{2}+784=0
Add 784 to both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-31\right)\times 784}}{2\left(-31\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -31 for a, 0 for b, and 784 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-31\right)\times 784}}{2\left(-31\right)}
Square 0.
x=\frac{0±\sqrt{124\times 784}}{2\left(-31\right)}
Multiply -4 times -31.
x=\frac{0±\sqrt{97216}}{2\left(-31\right)}
Multiply 124 times 784.
x=\frac{0±56\sqrt{31}}{2\left(-31\right)}
Take the square root of 97216.
x=\frac{0±56\sqrt{31}}{-62}
Multiply 2 times -31.
x=-\frac{28\sqrt{31}}{31}
Now solve the equation x=\frac{0±56\sqrt{31}}{-62} when ± is plus.
x=\frac{28\sqrt{31}}{31}
Now solve the equation x=\frac{0±56\sqrt{31}}{-62} when ± is minus.
x=-\frac{28\sqrt{31}}{31} x=\frac{28\sqrt{31}}{31}
The equation is now solved.