Solve for x
x=-\frac{3}{5}=-0.6
Graph
Share
Copied to clipboard
\left(x-1\right)x=\left(x-1\right)\left(x+3\right)+\left(x+3\right)\times 2
Variable x cannot be equal to any of the values -3,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+3\right), the least common multiple of x+3,x-1.
x^{2}-x=\left(x-1\right)\left(x+3\right)+\left(x+3\right)\times 2
Use the distributive property to multiply x-1 by x.
x^{2}-x=x^{2}+2x-3+\left(x+3\right)\times 2
Use the distributive property to multiply x-1 by x+3 and combine like terms.
x^{2}-x=x^{2}+2x-3+2x+6
Use the distributive property to multiply x+3 by 2.
x^{2}-x=x^{2}+4x-3+6
Combine 2x and 2x to get 4x.
x^{2}-x=x^{2}+4x+3
Add -3 and 6 to get 3.
x^{2}-x-x^{2}=4x+3
Subtract x^{2} from both sides.
-x=4x+3
Combine x^{2} and -x^{2} to get 0.
-x-4x=3
Subtract 4x from both sides.
-5x=3
Combine -x and -4x to get -5x.
x=\frac{3}{-5}
Divide both sides by -5.
x=-\frac{3}{5}
Fraction \frac{3}{-5} can be rewritten as -\frac{3}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}