Solve for x
x = \frac{16 \sqrt{24469} + 8}{45} \approx 55.795804876
x=\frac{8-16\sqrt{24469}}{45}\approx -55.44024932
Graph
Share
Copied to clipboard
x\times 22500x=8000\left(x+8700\right)
Variable x cannot be equal to -8700 since division by zero is not defined. Multiply both sides of the equation by x+8700.
x^{2}\times 22500=8000\left(x+8700\right)
Multiply x and x to get x^{2}.
x^{2}\times 22500=8000x+69600000
Use the distributive property to multiply 8000 by x+8700.
x^{2}\times 22500-8000x=69600000
Subtract 8000x from both sides.
x^{2}\times 22500-8000x-69600000=0
Subtract 69600000 from both sides.
22500x^{2}-8000x-69600000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8000\right)±\sqrt{\left(-8000\right)^{2}-4\times 22500\left(-69600000\right)}}{2\times 22500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 22500 for a, -8000 for b, and -69600000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8000\right)±\sqrt{64000000-4\times 22500\left(-69600000\right)}}{2\times 22500}
Square -8000.
x=\frac{-\left(-8000\right)±\sqrt{64000000-90000\left(-69600000\right)}}{2\times 22500}
Multiply -4 times 22500.
x=\frac{-\left(-8000\right)±\sqrt{64000000+6264000000000}}{2\times 22500}
Multiply -90000 times -69600000.
x=\frac{-\left(-8000\right)±\sqrt{6264064000000}}{2\times 22500}
Add 64000000 to 6264000000000.
x=\frac{-\left(-8000\right)±16000\sqrt{24469}}{2\times 22500}
Take the square root of 6264064000000.
x=\frac{8000±16000\sqrt{24469}}{2\times 22500}
The opposite of -8000 is 8000.
x=\frac{8000±16000\sqrt{24469}}{45000}
Multiply 2 times 22500.
x=\frac{16000\sqrt{24469}+8000}{45000}
Now solve the equation x=\frac{8000±16000\sqrt{24469}}{45000} when ± is plus. Add 8000 to 16000\sqrt{24469}.
x=\frac{16\sqrt{24469}+8}{45}
Divide 8000+16000\sqrt{24469} by 45000.
x=\frac{8000-16000\sqrt{24469}}{45000}
Now solve the equation x=\frac{8000±16000\sqrt{24469}}{45000} when ± is minus. Subtract 16000\sqrt{24469} from 8000.
x=\frac{8-16\sqrt{24469}}{45}
Divide 8000-16000\sqrt{24469} by 45000.
x=\frac{16\sqrt{24469}+8}{45} x=\frac{8-16\sqrt{24469}}{45}
The equation is now solved.
x\times 22500x=8000\left(x+8700\right)
Variable x cannot be equal to -8700 since division by zero is not defined. Multiply both sides of the equation by x+8700.
x^{2}\times 22500=8000\left(x+8700\right)
Multiply x and x to get x^{2}.
x^{2}\times 22500=8000x+69600000
Use the distributive property to multiply 8000 by x+8700.
x^{2}\times 22500-8000x=69600000
Subtract 8000x from both sides.
22500x^{2}-8000x=69600000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{22500x^{2}-8000x}{22500}=\frac{69600000}{22500}
Divide both sides by 22500.
x^{2}+\left(-\frac{8000}{22500}\right)x=\frac{69600000}{22500}
Dividing by 22500 undoes the multiplication by 22500.
x^{2}-\frac{16}{45}x=\frac{69600000}{22500}
Reduce the fraction \frac{-8000}{22500} to lowest terms by extracting and canceling out 500.
x^{2}-\frac{16}{45}x=\frac{9280}{3}
Reduce the fraction \frac{69600000}{22500} to lowest terms by extracting and canceling out 7500.
x^{2}-\frac{16}{45}x+\left(-\frac{8}{45}\right)^{2}=\frac{9280}{3}+\left(-\frac{8}{45}\right)^{2}
Divide -\frac{16}{45}, the coefficient of the x term, by 2 to get -\frac{8}{45}. Then add the square of -\frac{8}{45} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{45}x+\frac{64}{2025}=\frac{9280}{3}+\frac{64}{2025}
Square -\frac{8}{45} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{45}x+\frac{64}{2025}=\frac{6264064}{2025}
Add \frac{9280}{3} to \frac{64}{2025} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{8}{45}\right)^{2}=\frac{6264064}{2025}
Factor x^{2}-\frac{16}{45}x+\frac{64}{2025}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{45}\right)^{2}}=\sqrt{\frac{6264064}{2025}}
Take the square root of both sides of the equation.
x-\frac{8}{45}=\frac{16\sqrt{24469}}{45} x-\frac{8}{45}=-\frac{16\sqrt{24469}}{45}
Simplify.
x=\frac{16\sqrt{24469}+8}{45} x=\frac{8-16\sqrt{24469}}{45}
Add \frac{8}{45} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}