Solve for x
x=7+\frac{14}{y}
y\neq 0
Solve for y
y=-\frac{14}{7-x}
x\neq 7
Graph
Share
Copied to clipboard
yx-7\times 2=7y
Multiply both sides of the equation by 7y, the least common multiple of 7,y.
yx-14=7y
Multiply -7 and 2 to get -14.
yx=7y+14
Add 14 to both sides.
\frac{yx}{y}=\frac{7y+14}{y}
Divide both sides by y.
x=\frac{7y+14}{y}
Dividing by y undoes the multiplication by y.
x=7+\frac{14}{y}
Divide 14+7y by y.
yx-7\times 2=7y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 7y, the least common multiple of 7,y.
yx-14=7y
Multiply -7 and 2 to get -14.
yx-14-7y=0
Subtract 7y from both sides.
yx-7y=14
Add 14 to both sides. Anything plus zero gives itself.
\left(x-7\right)y=14
Combine all terms containing y.
\frac{\left(x-7\right)y}{x-7}=\frac{14}{x-7}
Divide both sides by x-7.
y=\frac{14}{x-7}
Dividing by x-7 undoes the multiplication by x-7.
y=\frac{14}{x-7}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}