Evaluate
\frac{x}{3}-\frac{1}{7}+\frac{225}{x}
Factor
\frac{7x^{2}-3x+4725}{21x}
Graph
Share
Copied to clipboard
\frac{x}{3}-\frac{1}{7}+\frac{9}{x}\times 25
Calculate 5 to the power of 2 and get 25.
\frac{x}{3}-\frac{1}{7}+\frac{9\times 25}{x}
Express \frac{9}{x}\times 25 as a single fraction.
\frac{7x}{21}-\frac{3}{21}+\frac{9\times 25}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 7 is 21. Multiply \frac{x}{3} times \frac{7}{7}. Multiply \frac{1}{7} times \frac{3}{3}.
\frac{7x-3}{21}+\frac{9\times 25}{x}
Since \frac{7x}{21} and \frac{3}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(7x-3\right)x}{21x}+\frac{21\times 9\times 25}{21x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 21 and x is 21x. Multiply \frac{7x-3}{21} times \frac{x}{x}. Multiply \frac{9\times 25}{x} times \frac{21}{21}.
\frac{\left(7x-3\right)x+21\times 9\times 25}{21x}
Since \frac{\left(7x-3\right)x}{21x} and \frac{21\times 9\times 25}{21x} have the same denominator, add them by adding their numerators.
\frac{7x^{2}-3x+4725}{21x}
Do the multiplications in \left(7x-3\right)x+21\times 9\times 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}