\frac{ x }{ 3 } + \frac{ 4 }{ 15 } = \frac{ 3x }{ } 5
Solve for x
x=\frac{1}{55}\approx 0.018181818
Graph
Share
Copied to clipboard
5x+4=15\times 3x\times 5
Multiply both sides of the equation by 15, the least common multiple of 3,15.
5x+4=45x\times 5
Multiply 15 and 3 to get 45.
5x+4=225x
Multiply 45 and 5 to get 225.
5x+4-225x=0
Subtract 225x from both sides.
-220x+4=0
Combine 5x and -225x to get -220x.
-220x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-4}{-220}
Divide both sides by -220.
x=\frac{1}{55}
Reduce the fraction \frac{-4}{-220} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}