Solve for x
x=1
x = \frac{13}{7} = 1\frac{6}{7} \approx 1.857142857
Graph
Share
Copied to clipboard
\left(3x-2\right)x+\left(2x-3\right)\times 5=4\left(2x-3\right)\left(3x-2\right)
Variable x cannot be equal to any of the values \frac{2}{3},\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-3\right)\left(3x-2\right), the least common multiple of 2x-3,3x-2.
3x^{2}-2x+\left(2x-3\right)\times 5=4\left(2x-3\right)\left(3x-2\right)
Use the distributive property to multiply 3x-2 by x.
3x^{2}-2x+10x-15=4\left(2x-3\right)\left(3x-2\right)
Use the distributive property to multiply 2x-3 by 5.
3x^{2}+8x-15=4\left(2x-3\right)\left(3x-2\right)
Combine -2x and 10x to get 8x.
3x^{2}+8x-15=\left(8x-12\right)\left(3x-2\right)
Use the distributive property to multiply 4 by 2x-3.
3x^{2}+8x-15=24x^{2}-52x+24
Use the distributive property to multiply 8x-12 by 3x-2 and combine like terms.
3x^{2}+8x-15-24x^{2}=-52x+24
Subtract 24x^{2} from both sides.
-21x^{2}+8x-15=-52x+24
Combine 3x^{2} and -24x^{2} to get -21x^{2}.
-21x^{2}+8x-15+52x=24
Add 52x to both sides.
-21x^{2}+60x-15=24
Combine 8x and 52x to get 60x.
-21x^{2}+60x-15-24=0
Subtract 24 from both sides.
-21x^{2}+60x-39=0
Subtract 24 from -15 to get -39.
x=\frac{-60±\sqrt{60^{2}-4\left(-21\right)\left(-39\right)}}{2\left(-21\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -21 for a, 60 for b, and -39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\left(-21\right)\left(-39\right)}}{2\left(-21\right)}
Square 60.
x=\frac{-60±\sqrt{3600+84\left(-39\right)}}{2\left(-21\right)}
Multiply -4 times -21.
x=\frac{-60±\sqrt{3600-3276}}{2\left(-21\right)}
Multiply 84 times -39.
x=\frac{-60±\sqrt{324}}{2\left(-21\right)}
Add 3600 to -3276.
x=\frac{-60±18}{2\left(-21\right)}
Take the square root of 324.
x=\frac{-60±18}{-42}
Multiply 2 times -21.
x=-\frac{42}{-42}
Now solve the equation x=\frac{-60±18}{-42} when ± is plus. Add -60 to 18.
x=1
Divide -42 by -42.
x=-\frac{78}{-42}
Now solve the equation x=\frac{-60±18}{-42} when ± is minus. Subtract 18 from -60.
x=\frac{13}{7}
Reduce the fraction \frac{-78}{-42} to lowest terms by extracting and canceling out 6.
x=1 x=\frac{13}{7}
The equation is now solved.
\left(3x-2\right)x+\left(2x-3\right)\times 5=4\left(2x-3\right)\left(3x-2\right)
Variable x cannot be equal to any of the values \frac{2}{3},\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x-3\right)\left(3x-2\right), the least common multiple of 2x-3,3x-2.
3x^{2}-2x+\left(2x-3\right)\times 5=4\left(2x-3\right)\left(3x-2\right)
Use the distributive property to multiply 3x-2 by x.
3x^{2}-2x+10x-15=4\left(2x-3\right)\left(3x-2\right)
Use the distributive property to multiply 2x-3 by 5.
3x^{2}+8x-15=4\left(2x-3\right)\left(3x-2\right)
Combine -2x and 10x to get 8x.
3x^{2}+8x-15=\left(8x-12\right)\left(3x-2\right)
Use the distributive property to multiply 4 by 2x-3.
3x^{2}+8x-15=24x^{2}-52x+24
Use the distributive property to multiply 8x-12 by 3x-2 and combine like terms.
3x^{2}+8x-15-24x^{2}=-52x+24
Subtract 24x^{2} from both sides.
-21x^{2}+8x-15=-52x+24
Combine 3x^{2} and -24x^{2} to get -21x^{2}.
-21x^{2}+8x-15+52x=24
Add 52x to both sides.
-21x^{2}+60x-15=24
Combine 8x and 52x to get 60x.
-21x^{2}+60x=24+15
Add 15 to both sides.
-21x^{2}+60x=39
Add 24 and 15 to get 39.
\frac{-21x^{2}+60x}{-21}=\frac{39}{-21}
Divide both sides by -21.
x^{2}+\frac{60}{-21}x=\frac{39}{-21}
Dividing by -21 undoes the multiplication by -21.
x^{2}-\frac{20}{7}x=\frac{39}{-21}
Reduce the fraction \frac{60}{-21} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{20}{7}x=-\frac{13}{7}
Reduce the fraction \frac{39}{-21} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{20}{7}x+\left(-\frac{10}{7}\right)^{2}=-\frac{13}{7}+\left(-\frac{10}{7}\right)^{2}
Divide -\frac{20}{7}, the coefficient of the x term, by 2 to get -\frac{10}{7}. Then add the square of -\frac{10}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{7}x+\frac{100}{49}=-\frac{13}{7}+\frac{100}{49}
Square -\frac{10}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{7}x+\frac{100}{49}=\frac{9}{49}
Add -\frac{13}{7} to \frac{100}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{7}\right)^{2}=\frac{9}{49}
Factor x^{2}-\frac{20}{7}x+\frac{100}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{7}\right)^{2}}=\sqrt{\frac{9}{49}}
Take the square root of both sides of the equation.
x-\frac{10}{7}=\frac{3}{7} x-\frac{10}{7}=-\frac{3}{7}
Simplify.
x=\frac{13}{7} x=1
Add \frac{10}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}