\frac{ x }{ 2.5 } \times 80 \% =14
Solve for x
x=43.75
Graph
Share
Copied to clipboard
\frac{x}{2.5}\times \frac{4}{5}=14
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
\frac{x}{2.5}=14\times \frac{5}{4}
Multiply both sides by \frac{5}{4}, the reciprocal of \frac{4}{5}.
\frac{x}{2.5}=\frac{14\times 5}{4}
Express 14\times \frac{5}{4} as a single fraction.
\frac{x}{2.5}=\frac{70}{4}
Multiply 14 and 5 to get 70.
\frac{x}{2.5}=\frac{35}{2}
Reduce the fraction \frac{70}{4} to lowest terms by extracting and canceling out 2.
x=\frac{35}{2}\times 2.5
Multiply both sides by 2.5.
x=\frac{35}{2}\times \frac{5}{2}
Convert decimal number 2.5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
x=\frac{35\times 5}{2\times 2}
Multiply \frac{35}{2} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
x=\frac{175}{4}
Do the multiplications in the fraction \frac{35\times 5}{2\times 2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}