Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x}{\left(x-3\right)\left(2x-1\right)}+\frac{x-3}{\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x-9}
Factor 2x^{2}-7x+3. Factor 4x^{2}+4x-3.
\frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}+\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x-9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(2x-1\right) and \left(2x-1\right)\left(2x+3\right) is \left(x-3\right)\left(2x-1\right)\left(2x+3\right). Multiply \frac{x}{\left(x-3\right)\left(2x-1\right)} times \frac{2x+3}{2x+3}. Multiply \frac{x-3}{\left(2x-1\right)\left(2x+3\right)} times \frac{x-3}{x-3}.
\frac{x\left(2x+3\right)+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x-9}
Since \frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} and \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+3x+x^{2}-3x-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x-9}
Do the multiplications in x\left(2x+3\right)+\left(x-3\right)\left(x-3\right).
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x-9}
Combine like terms in 2x^{2}+3x+x^{2}-3x-3x+9.
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{\left(x-3\right)\left(2x+3\right)}
Factor 2x^{2}-3x-9.
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{\left(x^{2}+1\right)\left(2x-1\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(2x-1\right)\left(2x+3\right) and \left(x-3\right)\left(2x+3\right) is \left(x-3\right)\left(2x-1\right)\left(2x+3\right). Multiply \frac{x^{2}+1}{\left(x-3\right)\left(2x+3\right)} times \frac{2x-1}{2x-1}.
\frac{3x^{2}-3x+9-\left(x^{2}+1\right)\left(2x-1\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}
Since \frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} and \frac{\left(x^{2}+1\right)\left(2x-1\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-3x+9-2x^{3}+x^{2}-2x+1}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}
Do the multiplications in 3x^{2}-3x+9-\left(x^{2}+1\right)\left(2x-1\right).
\frac{4x^{2}-5x+10-2x^{3}}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}
Combine like terms in 3x^{2}-3x+9-2x^{3}+x^{2}-2x+1.
\frac{4x^{2}-5x+10-2x^{3}}{4x^{3}-8x^{2}-15x+9}
Expand \left(x-3\right)\left(2x-1\right)\left(2x+3\right).
\frac{x}{\left(x-3\right)\left(2x-1\right)}+\frac{x-3}{\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x-9}
Factor 2x^{2}-7x+3. Factor 4x^{2}+4x-3.
\frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}+\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x-9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(2x-1\right) and \left(2x-1\right)\left(2x+3\right) is \left(x-3\right)\left(2x-1\right)\left(2x+3\right). Multiply \frac{x}{\left(x-3\right)\left(2x-1\right)} times \frac{2x+3}{2x+3}. Multiply \frac{x-3}{\left(2x-1\right)\left(2x+3\right)} times \frac{x-3}{x-3}.
\frac{x\left(2x+3\right)+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x-9}
Since \frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} and \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+3x+x^{2}-3x-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x-9}
Do the multiplications in x\left(2x+3\right)+\left(x-3\right)\left(x-3\right).
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x-9}
Combine like terms in 2x^{2}+3x+x^{2}-3x-3x+9.
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{\left(x-3\right)\left(2x+3\right)}
Factor 2x^{2}-3x-9.
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{\left(x^{2}+1\right)\left(2x-1\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(2x-1\right)\left(2x+3\right) and \left(x-3\right)\left(2x+3\right) is \left(x-3\right)\left(2x-1\right)\left(2x+3\right). Multiply \frac{x^{2}+1}{\left(x-3\right)\left(2x+3\right)} times \frac{2x-1}{2x-1}.
\frac{3x^{2}-3x+9-\left(x^{2}+1\right)\left(2x-1\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}
Since \frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} and \frac{\left(x^{2}+1\right)\left(2x-1\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3x^{2}-3x+9-2x^{3}+x^{2}-2x+1}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}
Do the multiplications in 3x^{2}-3x+9-\left(x^{2}+1\right)\left(2x-1\right).
\frac{4x^{2}-5x+10-2x^{3}}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}
Combine like terms in 3x^{2}-3x+9-2x^{3}+x^{2}-2x+1.
\frac{4x^{2}-5x+10-2x^{3}}{4x^{3}-8x^{2}-15x+9}
Expand \left(x-3\right)\left(2x-1\right)\left(2x+3\right).