Solve for x
x=\frac{2\sqrt{594781}}{695}+\frac{2}{5}\approx 2.619339457
x=-\frac{2\sqrt{594781}}{695}+\frac{2}{5}\approx -1.819339457
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac{ x }{ 2 } (2 \times 6950+(x-1) \times 69500)=165600
Share
Copied to clipboard
x\left(2\times 6950+\left(x-1\right)\times 69500\right)=331200
Multiply both sides of the equation by 2.
x\left(13900+\left(x-1\right)\times 69500\right)=331200
Multiply 2 and 6950 to get 13900.
x\left(13900+69500x-69500\right)=331200
Use the distributive property to multiply x-1 by 69500.
x\left(-55600+69500x\right)=331200
Subtract 69500 from 13900 to get -55600.
-55600x+69500x^{2}=331200
Use the distributive property to multiply x by -55600+69500x.
-55600x+69500x^{2}-331200=0
Subtract 331200 from both sides.
69500x^{2}-55600x-331200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-55600\right)±\sqrt{\left(-55600\right)^{2}-4\times 69500\left(-331200\right)}}{2\times 69500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 69500 for a, -55600 for b, and -331200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-55600\right)±\sqrt{3091360000-4\times 69500\left(-331200\right)}}{2\times 69500}
Square -55600.
x=\frac{-\left(-55600\right)±\sqrt{3091360000-278000\left(-331200\right)}}{2\times 69500}
Multiply -4 times 69500.
x=\frac{-\left(-55600\right)±\sqrt{3091360000+92073600000}}{2\times 69500}
Multiply -278000 times -331200.
x=\frac{-\left(-55600\right)±\sqrt{95164960000}}{2\times 69500}
Add 3091360000 to 92073600000.
x=\frac{-\left(-55600\right)±400\sqrt{594781}}{2\times 69500}
Take the square root of 95164960000.
x=\frac{55600±400\sqrt{594781}}{2\times 69500}
The opposite of -55600 is 55600.
x=\frac{55600±400\sqrt{594781}}{139000}
Multiply 2 times 69500.
x=\frac{400\sqrt{594781}+55600}{139000}
Now solve the equation x=\frac{55600±400\sqrt{594781}}{139000} when ± is plus. Add 55600 to 400\sqrt{594781}.
x=\frac{2\sqrt{594781}}{695}+\frac{2}{5}
Divide 55600+400\sqrt{594781} by 139000.
x=\frac{55600-400\sqrt{594781}}{139000}
Now solve the equation x=\frac{55600±400\sqrt{594781}}{139000} when ± is minus. Subtract 400\sqrt{594781} from 55600.
x=-\frac{2\sqrt{594781}}{695}+\frac{2}{5}
Divide 55600-400\sqrt{594781} by 139000.
x=\frac{2\sqrt{594781}}{695}+\frac{2}{5} x=-\frac{2\sqrt{594781}}{695}+\frac{2}{5}
The equation is now solved.
x\left(2\times 6950+\left(x-1\right)\times 69500\right)=331200
Multiply both sides of the equation by 2.
x\left(13900+\left(x-1\right)\times 69500\right)=331200
Multiply 2 and 6950 to get 13900.
x\left(13900+69500x-69500\right)=331200
Use the distributive property to multiply x-1 by 69500.
x\left(-55600+69500x\right)=331200
Subtract 69500 from 13900 to get -55600.
-55600x+69500x^{2}=331200
Use the distributive property to multiply x by -55600+69500x.
69500x^{2}-55600x=331200
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{69500x^{2}-55600x}{69500}=\frac{331200}{69500}
Divide both sides by 69500.
x^{2}+\left(-\frac{55600}{69500}\right)x=\frac{331200}{69500}
Dividing by 69500 undoes the multiplication by 69500.
x^{2}-\frac{4}{5}x=\frac{331200}{69500}
Reduce the fraction \frac{-55600}{69500} to lowest terms by extracting and canceling out 13900.
x^{2}-\frac{4}{5}x=\frac{3312}{695}
Reduce the fraction \frac{331200}{69500} to lowest terms by extracting and canceling out 100.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=\frac{3312}{695}+\left(-\frac{2}{5}\right)^{2}
Divide -\frac{4}{5}, the coefficient of the x term, by 2 to get -\frac{2}{5}. Then add the square of -\frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{3312}{695}+\frac{4}{25}
Square -\frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{17116}{3475}
Add \frac{3312}{695} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{5}\right)^{2}=\frac{17116}{3475}
Factor x^{2}-\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{\frac{17116}{3475}}
Take the square root of both sides of the equation.
x-\frac{2}{5}=\frac{2\sqrt{594781}}{695} x-\frac{2}{5}=-\frac{2\sqrt{594781}}{695}
Simplify.
x=\frac{2\sqrt{594781}}{695}+\frac{2}{5} x=-\frac{2\sqrt{594781}}{695}+\frac{2}{5}
Add \frac{2}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}