Solve for x
x\in \left(-\infty,\frac{1}{2}\right)\cup \left(1,\infty\right)
Graph
Share
Copied to clipboard
\frac{x}{1-x}-\frac{1-x}{1-x}<0
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1-x}{1-x}.
\frac{x-\left(1-x\right)}{1-x}<0
Since \frac{x}{1-x} and \frac{1-x}{1-x} have the same denominator, subtract them by subtracting their numerators.
\frac{x-1+x}{1-x}<0
Do the multiplications in x-\left(1-x\right).
\frac{2x-1}{1-x}<0
Combine like terms in x-1+x.
2x-1>0 1-x<0
For the quotient to be negative, 2x-1 and 1-x have to be of the opposite signs. Consider the case when 2x-1 is positive and 1-x is negative.
x>1
The solution satisfying both inequalities is x>1.
1-x>0 2x-1<0
Consider the case when 1-x is positive and 2x-1 is negative.
x<\frac{1}{2}
The solution satisfying both inequalities is x<\frac{1}{2}.
x>1\text{; }x<\frac{1}{2}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}