Solve for x_2
x_{2}=-160+\frac{64000}{x}
x\neq 0
Solve for x
x=\frac{64000}{x_{2}+160}
x_{2}\neq -160
Graph
Share
Copied to clipboard
\frac{x}{0.8}x_{2}=\left(\frac{400}{0.02}+\frac{-x}{0.02}\right)\times 4
Divide each term of 400-x by 0.02 to get \frac{400}{0.02}+\frac{-x}{0.02}.
\frac{x}{0.8}x_{2}=\left(\frac{40000}{2}+\frac{-x}{0.02}\right)\times 4
Expand \frac{400}{0.02} by multiplying both numerator and the denominator by 100.
\frac{x}{0.8}x_{2}=\left(20000+\frac{-x}{0.02}\right)\times 4
Divide 40000 by 2 to get 20000.
\frac{x}{0.8}x_{2}=\left(20000-50x\right)\times 4
Divide -x by 0.02 to get -50x.
\frac{x}{0.8}x_{2}=80000-200x
Use the distributive property to multiply 20000-50x by 4.
\frac{5x}{4}x_{2}=80000-200x
The equation is in standard form.
\frac{4\times \frac{5x}{4}x_{2}}{5x}=\frac{4\left(80000-200x\right)}{5x}
Divide both sides by \frac{5}{4}x.
x_{2}=\frac{4\left(80000-200x\right)}{5x}
Dividing by \frac{5}{4}x undoes the multiplication by \frac{5}{4}x.
x_{2}=-160+\frac{64000}{x}
Divide 80000-200x by \frac{5}{4}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}