Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x}{\left(x-1\right)\left(x+2\right)}-\frac{3}{\left(x-2\right)\left(-x-2\right)}+\frac{1}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}
Factor 4-x^{2}.
\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}+\frac{1}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and \left(x-2\right)\left(-x-2\right) is \left(x-2\right)\left(x-1\right)\left(x+2\right). Multiply \frac{x}{\left(x-1\right)\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{3}{\left(x-2\right)\left(-x-2\right)} times \frac{-\left(x-1\right)}{-\left(x-1\right)}.
\frac{x\left(x-2\right)-3\left(-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}+\frac{1}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}
Since \frac{x\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)} and \frac{3\left(-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x+3x-3}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}+\frac{1}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}
Do the multiplications in x\left(x-2\right)-3\left(-1\right)\left(x-1\right).
\frac{x^{2}+x-3}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}+\frac{1}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}
Combine like terms in x^{2}-2x+3x-3.
\frac{x^{2}+x-3+1}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Since \frac{x^{2}+x-3}{\left(x-2\right)\left(x-1\right)\left(x+2\right)} and \frac{1}{\left(x-1\right)\left(x+2\right)\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+x-2}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Combine like terms in x^{2}+x-3+1.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{x^{2}+x-2}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}.
\frac{1}{x-2}
Cancel out \left(x-1\right)\left(x+2\right) in both numerator and denominator.
\frac{x}{\left(x-1\right)\left(x+2\right)}-\frac{3}{\left(x-2\right)\left(-x-2\right)}+\frac{1}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}
Factor 4-x^{2}.
\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}-\frac{3\left(-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}+\frac{1}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and \left(x-2\right)\left(-x-2\right) is \left(x-2\right)\left(x-1\right)\left(x+2\right). Multiply \frac{x}{\left(x-1\right)\left(x+2\right)} times \frac{x-2}{x-2}. Multiply \frac{3}{\left(x-2\right)\left(-x-2\right)} times \frac{-\left(x-1\right)}{-\left(x-1\right)}.
\frac{x\left(x-2\right)-3\left(-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}+\frac{1}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}
Since \frac{x\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)} and \frac{3\left(-1\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x+3x-3}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}+\frac{1}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}
Do the multiplications in x\left(x-2\right)-3\left(-1\right)\left(x-1\right).
\frac{x^{2}+x-3}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}+\frac{1}{\left(x-1\right)\left(x+2\right)\left(x-2\right)}
Combine like terms in x^{2}-2x+3x-3.
\frac{x^{2}+x-3+1}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Since \frac{x^{2}+x-3}{\left(x-2\right)\left(x-1\right)\left(x+2\right)} and \frac{1}{\left(x-1\right)\left(x+2\right)\left(x-2\right)} have the same denominator, add them by adding their numerators.
\frac{x^{2}+x-2}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Combine like terms in x^{2}+x-3+1.
\frac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{x^{2}+x-2}{\left(x-2\right)\left(x-1\right)\left(x+2\right)}.
\frac{1}{x-2}
Cancel out \left(x-1\right)\left(x+2\right) in both numerator and denominator.