Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x\times 8}{\sqrt{39}-\sqrt{3}}=\frac{6}{\frac{\sqrt{39}+\sqrt{3}}{8}}
Divide x by \frac{\sqrt{39}-\sqrt{3}}{8} by multiplying x by the reciprocal of \frac{\sqrt{39}-\sqrt{3}}{8}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{\left(\sqrt{39}-\sqrt{3}\right)\left(\sqrt{39}+\sqrt{3}\right)}=\frac{6}{\frac{\sqrt{39}+\sqrt{3}}{8}}
Rationalize the denominator of \frac{x\times 8}{\sqrt{39}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{39}+\sqrt{3}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{\left(\sqrt{39}\right)^{2}-\left(\sqrt{3}\right)^{2}}=\frac{6}{\frac{\sqrt{39}+\sqrt{3}}{8}}
Consider \left(\sqrt{39}-\sqrt{3}\right)\left(\sqrt{39}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{39-3}=\frac{6}{\frac{\sqrt{39}+\sqrt{3}}{8}}
Square \sqrt{39}. Square \sqrt{3}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{6}{\frac{\sqrt{39}+\sqrt{3}}{8}}
Subtract 3 from 39 to get 36.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{6\times 8}{\sqrt{39}+\sqrt{3}}
Divide 6 by \frac{\sqrt{39}+\sqrt{3}}{8} by multiplying 6 by the reciprocal of \frac{\sqrt{39}+\sqrt{3}}{8}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{48}{\sqrt{39}+\sqrt{3}}
Multiply 6 and 8 to get 48.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{48\left(\sqrt{39}-\sqrt{3}\right)}{\left(\sqrt{39}+\sqrt{3}\right)\left(\sqrt{39}-\sqrt{3}\right)}
Rationalize the denominator of \frac{48}{\sqrt{39}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{39}-\sqrt{3}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{48\left(\sqrt{39}-\sqrt{3}\right)}{\left(\sqrt{39}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{39}+\sqrt{3}\right)\left(\sqrt{39}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{48\left(\sqrt{39}-\sqrt{3}\right)}{39-3}
Square \sqrt{39}. Square \sqrt{3}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{48\left(\sqrt{39}-\sqrt{3}\right)}{36}
Subtract 3 from 39 to get 36.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{4}{3}\left(\sqrt{39}-\sqrt{3}\right)
Divide 48\left(\sqrt{39}-\sqrt{3}\right) by 36 to get \frac{4}{3}\left(\sqrt{39}-\sqrt{3}\right).
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{4}{3}\sqrt{39}+\frac{4}{3}\left(-1\right)\sqrt{3}
Use the distributive property to multiply \frac{4}{3} by \sqrt{39}-\sqrt{3}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{4}{3}\sqrt{39}-\frac{4}{3}\sqrt{3}
Multiply \frac{4}{3} and -1 to get -\frac{4}{3}.
\frac{8x\sqrt{39}+8x\sqrt{3}}{36}=\frac{4}{3}\sqrt{39}-\frac{4}{3}\sqrt{3}
Use the distributive property to multiply x\times 8 by \sqrt{39}+\sqrt{3}.
8x\sqrt{39}+8x\sqrt{3}=48\sqrt{39}-48\sqrt{3}
Multiply both sides of the equation by 36, the least common multiple of 36,3.
\left(8\sqrt{39}+8\sqrt{3}\right)x=48\sqrt{39}-48\sqrt{3}
Combine all terms containing x.
\left(8\sqrt{3}+8\sqrt{39}\right)x=48\sqrt{39}-48\sqrt{3}
The equation is in standard form.
\frac{\left(8\sqrt{3}+8\sqrt{39}\right)x}{8\sqrt{3}+8\sqrt{39}}=\frac{48\sqrt{39}-48\sqrt{3}}{8\sqrt{3}+8\sqrt{39}}
Divide both sides by 8\sqrt{39}+8\sqrt{3}.
x=\frac{48\sqrt{39}-48\sqrt{3}}{8\sqrt{3}+8\sqrt{39}}
Dividing by 8\sqrt{39}+8\sqrt{3} undoes the multiplication by 8\sqrt{39}+8\sqrt{3}.
x=7-\sqrt{13}
Divide 48\sqrt{39}-48\sqrt{3} by 8\sqrt{39}+8\sqrt{3}.