Solve for x
x=7-\sqrt{13}\approx 3.394448725
Graph
Share
Copied to clipboard
\frac{x\times 8}{\sqrt{39}-\sqrt{3}}=\frac{6}{\frac{\sqrt{39}+\sqrt{3}}{8}}
Divide x by \frac{\sqrt{39}-\sqrt{3}}{8} by multiplying x by the reciprocal of \frac{\sqrt{39}-\sqrt{3}}{8}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{\left(\sqrt{39}-\sqrt{3}\right)\left(\sqrt{39}+\sqrt{3}\right)}=\frac{6}{\frac{\sqrt{39}+\sqrt{3}}{8}}
Rationalize the denominator of \frac{x\times 8}{\sqrt{39}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{39}+\sqrt{3}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{\left(\sqrt{39}\right)^{2}-\left(\sqrt{3}\right)^{2}}=\frac{6}{\frac{\sqrt{39}+\sqrt{3}}{8}}
Consider \left(\sqrt{39}-\sqrt{3}\right)\left(\sqrt{39}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{39-3}=\frac{6}{\frac{\sqrt{39}+\sqrt{3}}{8}}
Square \sqrt{39}. Square \sqrt{3}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{6}{\frac{\sqrt{39}+\sqrt{3}}{8}}
Subtract 3 from 39 to get 36.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{6\times 8}{\sqrt{39}+\sqrt{3}}
Divide 6 by \frac{\sqrt{39}+\sqrt{3}}{8} by multiplying 6 by the reciprocal of \frac{\sqrt{39}+\sqrt{3}}{8}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{48}{\sqrt{39}+\sqrt{3}}
Multiply 6 and 8 to get 48.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{48\left(\sqrt{39}-\sqrt{3}\right)}{\left(\sqrt{39}+\sqrt{3}\right)\left(\sqrt{39}-\sqrt{3}\right)}
Rationalize the denominator of \frac{48}{\sqrt{39}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{39}-\sqrt{3}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{48\left(\sqrt{39}-\sqrt{3}\right)}{\left(\sqrt{39}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{39}+\sqrt{3}\right)\left(\sqrt{39}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{48\left(\sqrt{39}-\sqrt{3}\right)}{39-3}
Square \sqrt{39}. Square \sqrt{3}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{48\left(\sqrt{39}-\sqrt{3}\right)}{36}
Subtract 3 from 39 to get 36.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{4}{3}\left(\sqrt{39}-\sqrt{3}\right)
Divide 48\left(\sqrt{39}-\sqrt{3}\right) by 36 to get \frac{4}{3}\left(\sqrt{39}-\sqrt{3}\right).
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{4}{3}\sqrt{39}+\frac{4}{3}\left(-1\right)\sqrt{3}
Use the distributive property to multiply \frac{4}{3} by \sqrt{39}-\sqrt{3}.
\frac{x\times 8\left(\sqrt{39}+\sqrt{3}\right)}{36}=\frac{4}{3}\sqrt{39}-\frac{4}{3}\sqrt{3}
Multiply \frac{4}{3} and -1 to get -\frac{4}{3}.
\frac{8x\sqrt{39}+8x\sqrt{3}}{36}=\frac{4}{3}\sqrt{39}-\frac{4}{3}\sqrt{3}
Use the distributive property to multiply x\times 8 by \sqrt{39}+\sqrt{3}.
8x\sqrt{39}+8x\sqrt{3}=48\sqrt{39}-48\sqrt{3}
Multiply both sides of the equation by 36, the least common multiple of 36,3.
\left(8\sqrt{39}+8\sqrt{3}\right)x=48\sqrt{39}-48\sqrt{3}
Combine all terms containing x.
\left(8\sqrt{3}+8\sqrt{39}\right)x=48\sqrt{39}-48\sqrt{3}
The equation is in standard form.
\frac{\left(8\sqrt{3}+8\sqrt{39}\right)x}{8\sqrt{3}+8\sqrt{39}}=\frac{48\sqrt{39}-48\sqrt{3}}{8\sqrt{3}+8\sqrt{39}}
Divide both sides by 8\sqrt{39}+8\sqrt{3}.
x=\frac{48\sqrt{39}-48\sqrt{3}}{8\sqrt{3}+8\sqrt{39}}
Dividing by 8\sqrt{39}+8\sqrt{3} undoes the multiplication by 8\sqrt{39}+8\sqrt{3}.
x=7-\sqrt{13}
Divide 48\sqrt{39}-48\sqrt{3} by 8\sqrt{39}+8\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}