Solve for x
x = \frac{\sqrt{3} + 1}{2} \approx 1.366025404
Graph
Share
Copied to clipboard
\frac{x\times 3}{\sqrt{3}}-\frac{x}{2+\sqrt{3}}=2
Divide x by \frac{\sqrt{3}}{3} by multiplying x by the reciprocal of \frac{\sqrt{3}}{3}.
\frac{x\times 3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\frac{x}{2+\sqrt{3}}=2
Rationalize the denominator of \frac{x\times 3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{x\times 3\sqrt{3}}{3}-\frac{x}{2+\sqrt{3}}=2
The square of \sqrt{3} is 3.
\frac{x\times 3\sqrt{3}}{3}-\frac{x\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=2
Rationalize the denominator of \frac{x}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\frac{x\times 3\sqrt{3}}{3}-\frac{x\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}=2
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x\times 3\sqrt{3}}{3}-\frac{x\left(2-\sqrt{3}\right)}{4-3}=2
Square 2. Square \sqrt{3}.
\frac{x\times 3\sqrt{3}}{3}-\frac{x\left(2-\sqrt{3}\right)}{1}=2
Subtract 3 from 4 to get 1.
\frac{x\times 3\sqrt{3}}{3}-x\left(2-\sqrt{3}\right)=2
Anything divided by one gives itself.
\frac{x\times 3\sqrt{3}}{3}-\left(2x-x\sqrt{3}\right)=2
Use the distributive property to multiply x by 2-\sqrt{3}.
\frac{x\times 3\sqrt{3}}{3}-2x-\left(-x\sqrt{3}\right)=2
To find the opposite of 2x-x\sqrt{3}, find the opposite of each term.
\frac{x\times 3\sqrt{3}}{3}-2x+x\sqrt{3}=2
The opposite of -x\sqrt{3} is x\sqrt{3}.
x\sqrt{3}-2x+x\sqrt{3}=2
Cancel out 3 and 3.
2x\sqrt{3}-2x=2
Combine x\sqrt{3} and x\sqrt{3} to get 2x\sqrt{3}.
\left(2\sqrt{3}-2\right)x=2
Combine all terms containing x.
\frac{\left(2\sqrt{3}-2\right)x}{2\sqrt{3}-2}=\frac{2}{2\sqrt{3}-2}
Divide both sides by 2\sqrt{3}-2.
x=\frac{2}{2\sqrt{3}-2}
Dividing by 2\sqrt{3}-2 undoes the multiplication by 2\sqrt{3}-2.
x=\frac{\sqrt{3}+1}{2}
Divide 2 by 2\sqrt{3}-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}