Solve for A
A=\frac{125s}{108}
n\neq 0\text{ and }s\neq 0
Solve for n
n\neq 0
Share
Copied to clipboard
nA=ns\times \frac{9}{7.776}
Multiply both sides of the equation by ns.
nA=ns\times \frac{9000}{7776}
Expand \frac{9}{7.776} by multiplying both numerator and the denominator by 1000.
nA=ns\times \frac{125}{108}
Reduce the fraction \frac{9000}{7776} to lowest terms by extracting and canceling out 72.
nA=\frac{125ns}{108}
The equation is in standard form.
\frac{nA}{n}=\frac{125ns}{108n}
Divide both sides by n.
A=\frac{125ns}{108n}
Dividing by n undoes the multiplication by n.
A=\frac{125s}{108}
Divide \frac{125ns}{108} by n.
nA=ns\times \frac{9}{7.776}
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ns.
nA=ns\times \frac{9000}{7776}
Expand \frac{9}{7.776} by multiplying both numerator and the denominator by 1000.
nA=ns\times \frac{125}{108}
Reduce the fraction \frac{9000}{7776} to lowest terms by extracting and canceling out 72.
nA-ns\times \frac{125}{108}=0
Subtract ns\times \frac{125}{108} from both sides.
nA-\frac{125}{108}ns=0
Multiply -1 and \frac{125}{108} to get -\frac{125}{108}.
\left(A-\frac{125}{108}s\right)n=0
Combine all terms containing n.
\left(-\frac{125s}{108}+A\right)n=0
The equation is in standard form.
n=0
Divide 0 by A-\frac{125}{108}s.
n\in \emptyset
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}