Solve for m
m=\frac{150p}{12-p}
p\neq 12\text{ and }p\neq 0
Solve for p
p=\frac{12m}{m+150}
m\neq 0\text{ and }m\neq -150
Share
Copied to clipboard
12m+12p\left(-11\right)=pm+12p\times \frac{3}{2}
Multiply both sides of the equation by 12p, the least common multiple of p,12,2.
12m-132p=pm+12p\times \frac{3}{2}
Multiply 12 and -11 to get -132.
12m-132p=pm+18p
Multiply 12 and \frac{3}{2} to get 18.
12m-132p-pm=18p
Subtract pm from both sides.
12m-pm=18p+132p
Add 132p to both sides.
12m-pm=150p
Combine 18p and 132p to get 150p.
\left(12-p\right)m=150p
Combine all terms containing m.
\frac{\left(12-p\right)m}{12-p}=\frac{150p}{12-p}
Divide both sides by -p+12.
m=\frac{150p}{12-p}
Dividing by -p+12 undoes the multiplication by -p+12.
12m+12p\left(-11\right)=pm+12p\times \frac{3}{2}
Variable p cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12p, the least common multiple of p,12,2.
12m-132p=pm+12p\times \frac{3}{2}
Multiply 12 and -11 to get -132.
12m-132p=pm+18p
Multiply 12 and \frac{3}{2} to get 18.
12m-132p-pm=18p
Subtract pm from both sides.
12m-132p-pm-18p=0
Subtract 18p from both sides.
12m-150p-pm=0
Combine -132p and -18p to get -150p.
-150p-pm=-12m
Subtract 12m from both sides. Anything subtracted from zero gives its negation.
\left(-150-m\right)p=-12m
Combine all terms containing p.
\left(-m-150\right)p=-12m
The equation is in standard form.
\frac{\left(-m-150\right)p}{-m-150}=-\frac{12m}{-m-150}
Divide both sides by -m-150.
p=-\frac{12m}{-m-150}
Dividing by -m-150 undoes the multiplication by -m-150.
p=\frac{12m}{m+150}
Divide -12m by -m-150.
p=\frac{12m}{m+150}\text{, }p\neq 0
Variable p cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}