Solve for h
h = \frac{5 \sqrt{26}}{13} \approx 1.961161351
Share
Copied to clipboard
\frac{h}{\frac{5}{2}}=\frac{2\times 2}{\sqrt{26}}
Divide 2 by \frac{\sqrt{26}}{2} by multiplying 2 by the reciprocal of \frac{\sqrt{26}}{2}.
\frac{h}{\frac{5}{2}}=\frac{4}{\sqrt{26}}
Multiply 2 and 2 to get 4.
\frac{h}{\frac{5}{2}}=\frac{4\sqrt{26}}{\left(\sqrt{26}\right)^{2}}
Rationalize the denominator of \frac{4}{\sqrt{26}} by multiplying numerator and denominator by \sqrt{26}.
\frac{h}{\frac{5}{2}}=\frac{4\sqrt{26}}{26}
The square of \sqrt{26} is 26.
\frac{h}{\frac{5}{2}}=\frac{2}{13}\sqrt{26}
Divide 4\sqrt{26} by 26 to get \frac{2}{13}\sqrt{26}.
\frac{2}{5}h=\frac{2\sqrt{26}}{13}
The equation is in standard form.
\frac{\frac{2}{5}h}{\frac{2}{5}}=\frac{2\sqrt{26}}{\frac{2}{5}\times 13}
Divide both sides of the equation by \frac{2}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
h=\frac{2\sqrt{26}}{\frac{2}{5}\times 13}
Dividing by \frac{2}{5} undoes the multiplication by \frac{2}{5}.
h=\frac{5\sqrt{26}}{13}
Divide \frac{2\sqrt{26}}{13} by \frac{2}{5} by multiplying \frac{2\sqrt{26}}{13} by the reciprocal of \frac{2}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}