Solve for c
c=-\frac{50\left(x-20\right)}{90-x}
x\neq 90
Solve for x
x=-\frac{10\left(9c-100\right)}{50-c}
c\neq 50
Graph
Share
Copied to clipboard
\left(-\frac{1}{50}x+\frac{9}{5}\right)\left(c-0\right)=20-x
Multiply both sides of the equation by 2\left(-x+90\right).
-\frac{1}{50}x\left(c-0\right)+\frac{9}{5}\left(c-0\right)=20-x
Use the distributive property to multiply -\frac{1}{50}x+\frac{9}{5} by c-0.
-\frac{1}{50}cx+\frac{9}{5}c=-x+20
Reorder the terms.
\left(-\frac{1}{50}x+\frac{9}{5}\right)c=-x+20
Combine all terms containing c.
\left(-\frac{x}{50}+\frac{9}{5}\right)c=20-x
The equation is in standard form.
\frac{\left(-\frac{x}{50}+\frac{9}{5}\right)c}{-\frac{x}{50}+\frac{9}{5}}=\frac{20-x}{-\frac{x}{50}+\frac{9}{5}}
Divide both sides by -\frac{1}{50}x+\frac{9}{5}.
c=\frac{20-x}{-\frac{x}{50}+\frac{9}{5}}
Dividing by -\frac{1}{50}x+\frac{9}{5} undoes the multiplication by -\frac{1}{50}x+\frac{9}{5}.
c=\frac{50\left(20-x\right)}{90-x}
Divide -x+20 by -\frac{1}{50}x+\frac{9}{5}.
\left(-\frac{1}{50}x+\frac{9}{5}\right)\left(c-0\right)=20-x
Variable x cannot be equal to 90 since division by zero is not defined. Multiply both sides of the equation by 2\left(-x+90\right).
-\frac{1}{50}x\left(c-0\right)+\frac{9}{5}\left(c-0\right)=20-x
Use the distributive property to multiply -\frac{1}{50}x+\frac{9}{5} by c-0.
-\frac{1}{50}x\left(c-0\right)+\frac{9}{5}\left(c-0\right)+x=20
Add x to both sides.
-\frac{1}{50}x\left(c-0\right)+x=20-\frac{9}{5}\left(c-0\right)
Subtract \frac{9}{5}\left(c-0\right) from both sides.
-\frac{1}{50}cx+x=20-\frac{9}{5}c
Reorder the terms.
\left(-\frac{1}{50}c+1\right)x=20-\frac{9}{5}c
Combine all terms containing x.
\left(-\frac{c}{50}+1\right)x=-\frac{9c}{5}+20
The equation is in standard form.
\frac{\left(-\frac{c}{50}+1\right)x}{-\frac{c}{50}+1}=\frac{-\frac{9c}{5}+20}{-\frac{c}{50}+1}
Divide both sides by -\frac{1}{50}c+1.
x=\frac{-\frac{9c}{5}+20}{-\frac{c}{50}+1}
Dividing by -\frac{1}{50}c+1 undoes the multiplication by -\frac{1}{50}c+1.
x=\frac{10\left(100-9c\right)}{50-c}
Divide 20-\frac{9c}{5} by -\frac{1}{50}c+1.
x=\frac{10\left(100-9c\right)}{50-c}\text{, }x\neq 90
Variable x cannot be equal to 90.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}