Solve for a_5
a_{5}=31b_{5}+450
b_{5}\neq -15
Solve for b_5
b_{5}=\frac{a_{5}-450}{31}
a_{5}\neq -15
Share
Copied to clipboard
a_{5}+15+\left(b_{5}+15\right)\left(-1\right)=30\left(b_{5}+15\right)
Multiply both sides of the equation by b_{5}+15.
a_{5}+15-b_{5}-15=30\left(b_{5}+15\right)
Use the distributive property to multiply b_{5}+15 by -1.
a_{5}-b_{5}=30\left(b_{5}+15\right)
Subtract 15 from 15 to get 0.
a_{5}-b_{5}=30b_{5}+450
Use the distributive property to multiply 30 by b_{5}+15.
a_{5}=30b_{5}+450+b_{5}
Add b_{5} to both sides.
a_{5}=31b_{5}+450
Combine 30b_{5} and b_{5} to get 31b_{5}.
a_{5}+15+\left(b_{5}+15\right)\left(-1\right)=30\left(b_{5}+15\right)
Variable b_{5} cannot be equal to -15 since division by zero is not defined. Multiply both sides of the equation by b_{5}+15.
a_{5}+15-b_{5}-15=30\left(b_{5}+15\right)
Use the distributive property to multiply b_{5}+15 by -1.
a_{5}-b_{5}=30\left(b_{5}+15\right)
Subtract 15 from 15 to get 0.
a_{5}-b_{5}=30b_{5}+450
Use the distributive property to multiply 30 by b_{5}+15.
a_{5}-b_{5}-30b_{5}=450
Subtract 30b_{5} from both sides.
a_{5}-31b_{5}=450
Combine -b_{5} and -30b_{5} to get -31b_{5}.
-31b_{5}=450-a_{5}
Subtract a_{5} from both sides.
\frac{-31b_{5}}{-31}=\frac{450-a_{5}}{-31}
Divide both sides by -31.
b_{5}=\frac{450-a_{5}}{-31}
Dividing by -31 undoes the multiplication by -31.
b_{5}=\frac{a_{5}-450}{31}
Divide 450-a_{5} by -31.
b_{5}=\frac{a_{5}-450}{31}\text{, }b_{5}\neq -15
Variable b_{5} cannot be equal to -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}