Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a-3}{3a^{2}}+\frac{\left(2-a\right)\times 3a}{3a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a^{2} and a is 3a^{2}. Multiply \frac{2-a}{a} times \frac{3a}{3a}.
\frac{a-3+\left(2-a\right)\times 3a}{3a^{2}}
Since \frac{a-3}{3a^{2}} and \frac{\left(2-a\right)\times 3a}{3a^{2}} have the same denominator, add them by adding their numerators.
\frac{a-3+6a-3a^{2}}{3a^{2}}
Do the multiplications in a-3+\left(2-a\right)\times 3a.
\frac{7a-3-3a^{2}}{3a^{2}}
Combine like terms in a-3+6a-3a^{2}.
\frac{-3\left(a-\left(-\frac{1}{6}\sqrt{13}+\frac{7}{6}\right)\right)\left(a-\left(\frac{1}{6}\sqrt{13}+\frac{7}{6}\right)\right)}{3a^{2}}
Factor the expressions that are not already factored in \frac{7a-3-3a^{2}}{3a^{2}}.
\frac{-\left(a-\left(-\frac{1}{6}\sqrt{13}+\frac{7}{6}\right)\right)\left(a-\left(\frac{1}{6}\sqrt{13}+\frac{7}{6}\right)\right)}{a^{2}}
Cancel out 3 in both numerator and denominator.
\frac{-\left(a+\frac{1}{6}\sqrt{13}-\frac{7}{6}\right)\left(a-\left(\frac{1}{6}\sqrt{13}+\frac{7}{6}\right)\right)}{a^{2}}
To find the opposite of -\frac{1}{6}\sqrt{13}+\frac{7}{6}, find the opposite of each term.
\frac{-\left(a+\frac{1}{6}\sqrt{13}-\frac{7}{6}\right)\left(a-\frac{1}{6}\sqrt{13}-\frac{7}{6}\right)}{a^{2}}
To find the opposite of \frac{1}{6}\sqrt{13}+\frac{7}{6}, find the opposite of each term.
\frac{\left(-a-\frac{1}{6}\sqrt{13}+\frac{7}{6}\right)\left(a-\frac{1}{6}\sqrt{13}-\frac{7}{6}\right)}{a^{2}}
Use the distributive property to multiply -1 by a+\frac{1}{6}\sqrt{13}-\frac{7}{6}.
\frac{-a^{2}+\frac{7}{3}a+\frac{1}{36}\left(\sqrt{13}\right)^{2}-\frac{49}{36}}{a^{2}}
Use the distributive property to multiply -a-\frac{1}{6}\sqrt{13}+\frac{7}{6} by a-\frac{1}{6}\sqrt{13}-\frac{7}{6} and combine like terms.
\frac{-a^{2}+\frac{7}{3}a+\frac{1}{36}\times 13-\frac{49}{36}}{a^{2}}
The square of \sqrt{13} is 13.
\frac{-a^{2}+\frac{7}{3}a+\frac{13}{36}-\frac{49}{36}}{a^{2}}
Multiply \frac{1}{36} and 13 to get \frac{13}{36}.
\frac{-a^{2}+\frac{7}{3}a-1}{a^{2}}
Subtract \frac{49}{36} from \frac{13}{36} to get -1.
\frac{a-3}{3a^{2}}+\frac{\left(2-a\right)\times 3a}{3a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a^{2} and a is 3a^{2}. Multiply \frac{2-a}{a} times \frac{3a}{3a}.
\frac{a-3+\left(2-a\right)\times 3a}{3a^{2}}
Since \frac{a-3}{3a^{2}} and \frac{\left(2-a\right)\times 3a}{3a^{2}} have the same denominator, add them by adding their numerators.
\frac{a-3+6a-3a^{2}}{3a^{2}}
Do the multiplications in a-3+\left(2-a\right)\times 3a.
\frac{7a-3-3a^{2}}{3a^{2}}
Combine like terms in a-3+6a-3a^{2}.
\frac{-3\left(a-\left(-\frac{1}{6}\sqrt{13}+\frac{7}{6}\right)\right)\left(a-\left(\frac{1}{6}\sqrt{13}+\frac{7}{6}\right)\right)}{3a^{2}}
Factor the expressions that are not already factored in \frac{7a-3-3a^{2}}{3a^{2}}.
\frac{-\left(a-\left(-\frac{1}{6}\sqrt{13}+\frac{7}{6}\right)\right)\left(a-\left(\frac{1}{6}\sqrt{13}+\frac{7}{6}\right)\right)}{a^{2}}
Cancel out 3 in both numerator and denominator.
\frac{-\left(a+\frac{1}{6}\sqrt{13}-\frac{7}{6}\right)\left(a-\left(\frac{1}{6}\sqrt{13}+\frac{7}{6}\right)\right)}{a^{2}}
To find the opposite of -\frac{1}{6}\sqrt{13}+\frac{7}{6}, find the opposite of each term.
\frac{-\left(a+\frac{1}{6}\sqrt{13}-\frac{7}{6}\right)\left(a-\frac{1}{6}\sqrt{13}-\frac{7}{6}\right)}{a^{2}}
To find the opposite of \frac{1}{6}\sqrt{13}+\frac{7}{6}, find the opposite of each term.
\frac{\left(-a-\frac{1}{6}\sqrt{13}+\frac{7}{6}\right)\left(a-\frac{1}{6}\sqrt{13}-\frac{7}{6}\right)}{a^{2}}
Use the distributive property to multiply -1 by a+\frac{1}{6}\sqrt{13}-\frac{7}{6}.
\frac{-a^{2}+\frac{7}{3}a+\frac{1}{36}\left(\sqrt{13}\right)^{2}-\frac{49}{36}}{a^{2}}
Use the distributive property to multiply -a-\frac{1}{6}\sqrt{13}+\frac{7}{6} by a-\frac{1}{6}\sqrt{13}-\frac{7}{6} and combine like terms.
\frac{-a^{2}+\frac{7}{3}a+\frac{1}{36}\times 13-\frac{49}{36}}{a^{2}}
The square of \sqrt{13} is 13.
\frac{-a^{2}+\frac{7}{3}a+\frac{13}{36}-\frac{49}{36}}{a^{2}}
Multiply \frac{1}{36} and 13 to get \frac{13}{36}.
\frac{-a^{2}+\frac{7}{3}a-1}{a^{2}}
Subtract \frac{49}{36} from \frac{13}{36} to get -1.