Evaluate
-1-\frac{1}{a}
Expand
-1-\frac{1}{a}
Share
Copied to clipboard
\frac{a-\frac{1}{a}}{1-a^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 2 to get 1.
\frac{\frac{aa}{a}-\frac{1}{a}}{1-a^{1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{\frac{aa-1}{a}}{1-a^{1}}
Since \frac{aa}{a} and \frac{1}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-1}{a}}{1-a^{1}}
Do the multiplications in aa-1.
\frac{\frac{a^{2}-1}{a}}{1-a}
Calculate a to the power of 1 and get a.
\frac{a^{2}-1}{a\left(1-a\right)}
Express \frac{\frac{a^{2}-1}{a}}{1-a} as a single fraction.
\frac{\left(a-1\right)\left(a+1\right)}{a\left(-a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a+1\right)\left(-a+1\right)}{a\left(-a+1\right)}
Extract the negative sign in -1+a.
\frac{-\left(a+1\right)}{a}
Cancel out -a+1 in both numerator and denominator.
\frac{-a-1}{a}
Expand the expression.
\frac{a-\frac{1}{a}}{1-a^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 2 to get 1.
\frac{\frac{aa}{a}-\frac{1}{a}}{1-a^{1}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{\frac{aa-1}{a}}{1-a^{1}}
Since \frac{aa}{a} and \frac{1}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{2}-1}{a}}{1-a^{1}}
Do the multiplications in aa-1.
\frac{\frac{a^{2}-1}{a}}{1-a}
Calculate a to the power of 1 and get a.
\frac{a^{2}-1}{a\left(1-a\right)}
Express \frac{\frac{a^{2}-1}{a}}{1-a} as a single fraction.
\frac{\left(a-1\right)\left(a+1\right)}{a\left(-a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a+1\right)\left(-a+1\right)}{a\left(-a+1\right)}
Extract the negative sign in -1+a.
\frac{-\left(a+1\right)}{a}
Cancel out -a+1 in both numerator and denominator.
\frac{-a-1}{a}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}