Solve for a
a=-\frac{\left(4-y\right)\left(x-4\right)}{b}
y\neq 4\text{ and }b\neq 0
Solve for b
\left\{\begin{matrix}b=-\frac{\left(4-y\right)\left(x-4\right)}{a}\text{, }&y\neq 4\text{ and }x\neq 4\text{ and }a\neq 0\\b\neq 0\text{, }&a=0\text{ and }x=4\text{ and }y\neq 4\end{matrix}\right.
Graph
Share
Copied to clipboard
-ba=\left(y-4\right)\left(4-x\right)
Multiply both sides of the equation by b\left(y-4\right), the least common multiple of 4-y,b.
-ba=4y-yx-16+4x
Use the distributive property to multiply y-4 by 4-x.
\left(-b\right)a=-xy+4x+4y-16
The equation is in standard form.
\frac{\left(-b\right)a}{-b}=\frac{\left(4-y\right)\left(x-4\right)}{-b}
Divide both sides by -b.
a=\frac{\left(4-y\right)\left(x-4\right)}{-b}
Dividing by -b undoes the multiplication by -b.
a=-\frac{\left(4-y\right)\left(x-4\right)}{b}
Divide \left(-4+x\right)\left(4-y\right) by -b.
-ba=\left(y-4\right)\left(4-x\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b\left(y-4\right), the least common multiple of 4-y,b.
-ba=4y-yx-16+4x
Use the distributive property to multiply y-4 by 4-x.
\left(-a\right)b=-xy+4x+4y-16
The equation is in standard form.
\frac{\left(-a\right)b}{-a}=\frac{\left(4-y\right)\left(x-4\right)}{-a}
Divide both sides by -a.
b=\frac{\left(4-y\right)\left(x-4\right)}{-a}
Dividing by -a undoes the multiplication by -a.
b=-\frac{\left(4-y\right)\left(x-4\right)}{a}
Divide \left(-4+x\right)\left(4-y\right) by -a.
b=-\frac{\left(4-y\right)\left(x-4\right)}{a}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}