Solve for x
x=\frac{\sqrt{649}}{24}+\frac{7}{8}\approx 1.936478267
x=-\frac{\sqrt{649}}{24}+\frac{7}{8}\approx -0.186478267
Graph
Share
Copied to clipboard
\left(4x-7\right)\left(9x+7\right)=\left(7x-9\right)\left(4-0x\right)
Variable x cannot be equal to any of the values \frac{9}{7},\frac{7}{4} since division by zero is not defined. Multiply both sides of the equation by \left(4x-7\right)\left(7x-9\right), the least common multiple of 7x-9,4x-7.
36x^{2}-35x-49=\left(7x-9\right)\left(4-0x\right)
Use the distributive property to multiply 4x-7 by 9x+7 and combine like terms.
36x^{2}-35x-49=\left(7x-9\right)\left(4-0\right)
Anything times zero gives zero.
36x^{2}-35x-49=\left(7x-9\right)\times 4
Subtract 0 from 4 to get 4.
36x^{2}-35x-49=28x-36
Use the distributive property to multiply 7x-9 by 4.
36x^{2}-35x-49-28x=-36
Subtract 28x from both sides.
36x^{2}-63x-49=-36
Combine -35x and -28x to get -63x.
36x^{2}-63x-49+36=0
Add 36 to both sides.
36x^{2}-63x-13=0
Add -49 and 36 to get -13.
x=\frac{-\left(-63\right)±\sqrt{\left(-63\right)^{2}-4\times 36\left(-13\right)}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, -63 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-63\right)±\sqrt{3969-4\times 36\left(-13\right)}}{2\times 36}
Square -63.
x=\frac{-\left(-63\right)±\sqrt{3969-144\left(-13\right)}}{2\times 36}
Multiply -4 times 36.
x=\frac{-\left(-63\right)±\sqrt{3969+1872}}{2\times 36}
Multiply -144 times -13.
x=\frac{-\left(-63\right)±\sqrt{5841}}{2\times 36}
Add 3969 to 1872.
x=\frac{-\left(-63\right)±3\sqrt{649}}{2\times 36}
Take the square root of 5841.
x=\frac{63±3\sqrt{649}}{2\times 36}
The opposite of -63 is 63.
x=\frac{63±3\sqrt{649}}{72}
Multiply 2 times 36.
x=\frac{3\sqrt{649}+63}{72}
Now solve the equation x=\frac{63±3\sqrt{649}}{72} when ± is plus. Add 63 to 3\sqrt{649}.
x=\frac{\sqrt{649}}{24}+\frac{7}{8}
Divide 63+3\sqrt{649} by 72.
x=\frac{63-3\sqrt{649}}{72}
Now solve the equation x=\frac{63±3\sqrt{649}}{72} when ± is minus. Subtract 3\sqrt{649} from 63.
x=-\frac{\sqrt{649}}{24}+\frac{7}{8}
Divide 63-3\sqrt{649} by 72.
x=\frac{\sqrt{649}}{24}+\frac{7}{8} x=-\frac{\sqrt{649}}{24}+\frac{7}{8}
The equation is now solved.
\left(4x-7\right)\left(9x+7\right)=\left(7x-9\right)\left(4-0x\right)
Variable x cannot be equal to any of the values \frac{9}{7},\frac{7}{4} since division by zero is not defined. Multiply both sides of the equation by \left(4x-7\right)\left(7x-9\right), the least common multiple of 7x-9,4x-7.
36x^{2}-35x-49=\left(7x-9\right)\left(4-0x\right)
Use the distributive property to multiply 4x-7 by 9x+7 and combine like terms.
36x^{2}-35x-49=\left(7x-9\right)\left(4-0\right)
Anything times zero gives zero.
36x^{2}-35x-49=\left(7x-9\right)\times 4
Subtract 0 from 4 to get 4.
36x^{2}-35x-49=28x-36
Use the distributive property to multiply 7x-9 by 4.
36x^{2}-35x-49-28x=-36
Subtract 28x from both sides.
36x^{2}-63x-49=-36
Combine -35x and -28x to get -63x.
36x^{2}-63x=-36+49
Add 49 to both sides.
36x^{2}-63x=13
Add -36 and 49 to get 13.
\frac{36x^{2}-63x}{36}=\frac{13}{36}
Divide both sides by 36.
x^{2}+\left(-\frac{63}{36}\right)x=\frac{13}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}-\frac{7}{4}x=\frac{13}{36}
Reduce the fraction \frac{-63}{36} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=\frac{13}{36}+\left(-\frac{7}{8}\right)^{2}
Divide -\frac{7}{4}, the coefficient of the x term, by 2 to get -\frac{7}{8}. Then add the square of -\frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{13}{36}+\frac{49}{64}
Square -\frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{649}{576}
Add \frac{13}{36} to \frac{49}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{8}\right)^{2}=\frac{649}{576}
Factor x^{2}-\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{649}{576}}
Take the square root of both sides of the equation.
x-\frac{7}{8}=\frac{\sqrt{649}}{24} x-\frac{7}{8}=-\frac{\sqrt{649}}{24}
Simplify.
x=\frac{\sqrt{649}}{24}+\frac{7}{8} x=-\frac{\sqrt{649}}{24}+\frac{7}{8}
Add \frac{7}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}