Evaluate
\frac{999}{52}\approx 19.211538462
Factor
\frac{3 ^ {3} \cdot 37}{2 ^ {2} \cdot 13} = 19\frac{11}{52} = 19.21153846153846
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)999}\\\end{array}
Use the 1^{st} digit 9 from dividend 999
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)999}\\\end{array}
Since 9 is less than 52, use the next digit 9 from dividend 999 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)999}\\\end{array}
Use the 2^{nd} digit 9 from dividend 999
\begin{array}{l}\phantom{52)}01\phantom{4}\\52\overline{)999}\\\phantom{52)}\underline{\phantom{}52\phantom{9}}\\\phantom{52)}47\\\end{array}
Find closest multiple of 52 to 99. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 99 to get reminder 47. Add 1 to quotient.
\begin{array}{l}\phantom{52)}01\phantom{5}\\52\overline{)999}\\\phantom{52)}\underline{\phantom{}52\phantom{9}}\\\phantom{52)}479\\\end{array}
Use the 3^{rd} digit 9 from dividend 999
\begin{array}{l}\phantom{52)}019\phantom{6}\\52\overline{)999}\\\phantom{52)}\underline{\phantom{}52\phantom{9}}\\\phantom{52)}479\\\phantom{52)}\underline{\phantom{}468\phantom{}}\\\phantom{52)9}11\\\end{array}
Find closest multiple of 52 to 479. We see that 9 \times 52 = 468 is the nearest. Now subtract 468 from 479 to get reminder 11. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }11
Since 11 is less than 52, stop the division. The reminder is 11. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}