Evaluate
\frac{969}{50}=19.38
Factor
\frac{3 \cdot 17 \cdot 19}{2 \cdot 5 ^ {2}} = 19\frac{19}{50} = 19.38
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)969}\\\end{array}
Use the 1^{st} digit 9 from dividend 969
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)969}\\\end{array}
Since 9 is less than 50, use the next digit 6 from dividend 969 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)969}\\\end{array}
Use the 2^{nd} digit 6 from dividend 969
\begin{array}{l}\phantom{50)}01\phantom{4}\\50\overline{)969}\\\phantom{50)}\underline{\phantom{}50\phantom{9}}\\\phantom{50)}46\\\end{array}
Find closest multiple of 50 to 96. We see that 1 \times 50 = 50 is the nearest. Now subtract 50 from 96 to get reminder 46. Add 1 to quotient.
\begin{array}{l}\phantom{50)}01\phantom{5}\\50\overline{)969}\\\phantom{50)}\underline{\phantom{}50\phantom{9}}\\\phantom{50)}469\\\end{array}
Use the 3^{rd} digit 9 from dividend 969
\begin{array}{l}\phantom{50)}019\phantom{6}\\50\overline{)969}\\\phantom{50)}\underline{\phantom{}50\phantom{9}}\\\phantom{50)}469\\\phantom{50)}\underline{\phantom{}450\phantom{}}\\\phantom{50)9}19\\\end{array}
Find closest multiple of 50 to 469. We see that 9 \times 50 = 450 is the nearest. Now subtract 450 from 469 to get reminder 19. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }19
Since 19 is less than 50, stop the division. The reminder is 19. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}