Evaluate
24
Factor
2^{3}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{40)}\phantom{1}\\40\overline{)960}\\\end{array}
Use the 1^{st} digit 9 from dividend 960
\begin{array}{l}\phantom{40)}0\phantom{2}\\40\overline{)960}\\\end{array}
Since 9 is less than 40, use the next digit 6 from dividend 960 and add 0 to the quotient
\begin{array}{l}\phantom{40)}0\phantom{3}\\40\overline{)960}\\\end{array}
Use the 2^{nd} digit 6 from dividend 960
\begin{array}{l}\phantom{40)}02\phantom{4}\\40\overline{)960}\\\phantom{40)}\underline{\phantom{}80\phantom{9}}\\\phantom{40)}16\\\end{array}
Find closest multiple of 40 to 96. We see that 2 \times 40 = 80 is the nearest. Now subtract 80 from 96 to get reminder 16. Add 2 to quotient.
\begin{array}{l}\phantom{40)}02\phantom{5}\\40\overline{)960}\\\phantom{40)}\underline{\phantom{}80\phantom{9}}\\\phantom{40)}160\\\end{array}
Use the 3^{rd} digit 0 from dividend 960
\begin{array}{l}\phantom{40)}024\phantom{6}\\40\overline{)960}\\\phantom{40)}\underline{\phantom{}80\phantom{9}}\\\phantom{40)}160\\\phantom{40)}\underline{\phantom{}160\phantom{}}\\\phantom{40)999}0\\\end{array}
Find closest multiple of 40 to 160. We see that 4 \times 40 = 160 is the nearest. Now subtract 160 from 160 to get reminder 0. Add 4 to quotient.
\text{Quotient: }24 \text{Reminder: }0
Since 0 is less than 40, stop the division. The reminder is 0. The topmost line 024 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}