Evaluate
\frac{96}{71}\approx 1.352112676
Factor
\frac{2 ^ {5} \cdot 3}{71} = 1\frac{25}{71} = 1.352112676056338
Share
Copied to clipboard
\begin{array}{l}\phantom{71)}\phantom{1}\\71\overline{)96}\\\end{array}
Use the 1^{st} digit 9 from dividend 96
\begin{array}{l}\phantom{71)}0\phantom{2}\\71\overline{)96}\\\end{array}
Since 9 is less than 71, use the next digit 6 from dividend 96 and add 0 to the quotient
\begin{array}{l}\phantom{71)}0\phantom{3}\\71\overline{)96}\\\end{array}
Use the 2^{nd} digit 6 from dividend 96
\begin{array}{l}\phantom{71)}01\phantom{4}\\71\overline{)96}\\\phantom{71)}\underline{\phantom{}71\phantom{}}\\\phantom{71)}25\\\end{array}
Find closest multiple of 71 to 96. We see that 1 \times 71 = 71 is the nearest. Now subtract 71 from 96 to get reminder 25. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }25
Since 25 is less than 71, stop the division. The reminder is 25. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}